A review on the theory and application of Boussinesq-type equations for water waves
-
摘要:
Boussinesq型方程是研究水波传播与演化问题的重要工具之一,本文就1967-2018年常用的Boussinesq型水波方程从理论推导和数值应用两个方面进行了回顾,以期推动该类方程在海岸(海洋)工程波浪水动力方向的深入研究和应用。此类方程推导主要从欧拉方程或Laplace方程出发。在一定的非线性和缓坡假设等条件下,国内外学者建立了多个Boussinesq型水波方程,并以Stokes波的相关理论为依据,考察了这些方程在相速度、群速度、线性变浅梯度、二阶非线性、三阶非线性、波幅离散、速度沿水深分布以及和(差)频等多方面性能的精度。将Boussinesq型水波方程分为水平二维和三维两大类,并对主要Boussinesq型水波方程的特性进行了评述。进而又对适合渗透地形和存在流体分层情况下的Boussinesq型水波方程进行了简述与评论。最后对这些方程的应用进行了总结与分析。
-
关键词:
- Boussinesq型方程 /
- 色散性 /
- 非线性 /
- 变浅性 /
- 应用研究
Abstract:Boussinesq-type equation is one of the important tools for simulating the propagation and evolution of water waves. The theoretical derivation and numerical application of the Boussinesq-type water wave equation dating back to 1967 are reviewed with the hope of promoting its deep development and application in the fields of coastal and ocean engineering. From the theoretical point of view, the derivation of such equations mainly starts from Euler equations or Laplace equations. Under the conditions of certain nonlinearity and gentle slope assumptions, a variety of Boussinesq-type water wave equations have been proposed worldwide. Through the comparisons with the related theories of Stokes waves, these equations are investigated with respect to phase velocity, group velocity, linear shoaling gradient, second-order nonlinearity, third-order nonlinearity, dispersion characteristics due to amplitude dispersion, velocity distribution along the vertical column, sub- and super harmonics etc. The majority of Boussinesq-type equations in literature for waves are reviewed and grouped into two categories, namely horizontal two-dimensional type and three-dimensional type. The usage of Boussinesq-type equations involved with permeable media and the presence of fluid stratification are also briefly described and commented. Finally, the application of these equations is summarized and analyzed.
-
表 1 Boussinesq型水波方程的最大适用水深(kh)
Tab. 1 Maximum application water depth of different Boussinesq-type models
参考文献 色散性 二阶非线性 变浅作用 速度分布特征 Peregrine[2] 0.75 − − 0.5 Madsen等[4-5] 3 − 3 − Nwogu[6] 3 − − 1.5 Wei等[21] 3 1.2 − 1.5 邹志利[27] 3 0.8 3 − Gobbi等[30] 6 3.0 − 4 Madsen等[40] 25~40 25~40 30 12 Lynett和Liu[16] 8~10 6 10 6* Lynett和Liu[32] 30 − − 12 Chazel等[42] 20 − 12 8 Liu和Fang[44] 53 45 60 23.2 Liu等[45]** 667~800 300 300 352~423 Liu等[45]*** 7 600 − − − 注:*是仅针对水平速度,**是针对最高空间导数为3的方程,***指最高空间导数为5的方程,-表示原文献没有给出适用范围或不能直接给出。 -
[1] Boussinesq J. Théorie des ondes et de remous qui se propagent le dong d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce danal des vitesses sensiblement paralleles de la surface au fond[J]. Journal de Mathematique Pures et Appliquées, 1872, 17: 55−108. [2] Peregrine D H. Long waves on a beach[J]. Journal of Fluid Mechanics, 1967, 27(4): 815−827. doi: 10.1017/S0022112067002605 [3] Witting J M. A unified model for the evolution of nonlinear water waves[J]. Journal of Computational Physics, 1984, 56(2): 203−236. doi: 10.1016/0021-9991(84)90092-5 [4] Madsen P A, Murray R, Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics[J]. Coastal Engineering, 1991, 15(4): 371−388. doi: 10.1016/0378-3839(91)90017-B [5] Madsen P A, Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J]. Coastal Engineering, 1992, 18(3/4): 183−204. [6] Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(6): 618−638. doi: 10.1061/(ASCE)0733-950X(1993)119:6(618) [7] Schäffer H A, Madsen P A. Further enhancements of Boussinesq-type equations[J]. Coastal Engineering, 1995, 26(1/2): 1−14. [8] Chen Y Z, Liu P L F. Modified Boussinesq equations and associated parabolic models for water wave propagation[J]. Journal of Fluid Mechanics, 1995, 288: 351−381. doi: 10.1017/S0022112095001170 [9] Beji S, Nadaoka K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth[J]. Ocean Engineering, 1996, 23(8): 691−704. doi: 10.1016/0029-8018(96)84408-8 [10] 林建国, 邱大洪, 邹志利. 新型Boussinesq方程的进一步改善[J]. 海洋学报, 1998, 20(2): 113−119.Lin Jianguo, Qiu Dahong, Zou Zhili. Further improvement of new Boussinesq-type equations[J]. Haiyang Xuebao, 1998, 20(2): 113−119. [11] 张永刚, 李玉成. 一种新型式的Boussinesq方程[J]. 科学通报, 1997, 42(21): 2332−2334. doi: 10.1360/csb1997-42-21-2332Zhang Yonggang, Li Yucheng. A new type of Boussinesq equation[J]. Chinese Science Bulletin, 1997, 42(21): 2332−2334. doi: 10.1360/csb1997-42-21-2332 [12] Zhao M, Teng B, Cheng L. A new form of generalized Boussinesq equations for varying water depth[J]. Ocean Engineering, 2004, 31(16): 2047−2072. doi: 10.1016/j.oceaneng.2004.03.010 [13] Schäffer H A. Discussion of "a formal derivation and numerical modelling of the improved Boussinesq equations for varying depth"[J]. Ocean Engineering, 1998, 25(6): 497−500. doi: 10.1016/S0029-8018(97)00031-0 [14] Zou Z L. Higher order Boussinesq equations[J]. Ocean Engineering, 1999, 26(8): 767−792. doi: 10.1016/S0029-8018(98)00019-5 [15] Zou Z L. A new form of higher order Boussinesq equations[J]. Ocean Engineering, 2000, 27(5): 557−575. doi: 10.1016/S0029-8018(99)00007-4 [16] Lynett P, Liu P L F. A two-layer approach to wave modeling[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2049): 2637−2669. doi: 10.1098/rspa.2004.1305 [17] Liu Z B, Sun Z C. Two sets of higher-order Boussinesq-type equations for water waves[J]. Ocean Engineering, 2005, 32(11/12): 1296−1310. [18] Galan A, Simarro G, Orifila A, et al. Fully nonlinear model for water wave propagation from deep to shallow waters[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2012, 138(5): 362−371. doi: 10.1061/(ASCE)WW.1943-5460.0000143 [19] Simarro G, Orfila A, Galan A. Linear shoaling in Boussinesq-type wave propagation models[J]. Coastal Engineering, 2013, 80: 100−106. doi: 10.1016/j.coastaleng.2013.05.009 [20] 刘忠波, 房克照, 程永舟. Boussinesq水波方程变浅性能的改进[C]//第十七届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2015: 256−262.Liu Zhongbo, Fang Kezhao, Cheng Yongzhou. Improvement of the shoaling performance of Boussinesq equations[C]//Proceedings of the 17th China Oceanographic (Offshore) Engineering Symposium (Part 1). Beijing: China Ocean Press, 2015: 256−262. [21] Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear Boussinesq model for surface waves. Part I. Highly nonlinear unsteady waves[J]. Journal of Fluid Mechanics, 1995, 294: 71−92. doi: 10.1017/S0022112095002813 [22] Simarro G. Discussion to “Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions” by J. Choi, J. T. Kirby and S. B Yoon[J]. Coastal Engineering, 2015, 106: 30−31. doi: 10.1016/j.coastaleng.2015.09.008 [23] Choi J, Kirby J T, Yoon S B. Reply to “Discussion to ‘Boussinesq modeling of longshore currents in the Sandy Duck experiment under directional random wave conditions’ by J. Choi, J. T. Kirby and S. B Yoon”[J]. Coastal Engineering, 2015, 106: 4−6. doi: 10.1016/j.coastaleng.2015.09.002 [24] Madsen P A, Schäffer H A. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 356(1749): 3123−3181. doi: 10.1098/rsta.1998.0309 [25] Chondros M K, Memos C D. A 2DH nonlinear Boussinesq-type wave model of improved dispersion, shoaling, and wave generation characteristics[J]. Coastal Engineering, 2014, 91: 99−122. doi: 10.1016/j.coastaleng.2014.05.007 [26] Liu Z B, Fang K Z. Discussion of “A 2DH nonlinear Boussinesq-type wave model of improved dispersion, shoaling, and wave generation characteristics” by Chondros and Memo[J]. Coastal Engineering, 2015, 95: 1−3. doi: 10.1016/j.coastaleng.2014.09.005 [27] 邹志利. 高阶Boussinesq水波方程[J]. 中国科学:E辑, 1997, 27(5): 460−473.Zou Zhili. Higher-order Boussinesq wave equations[J]. Science in China: Series E, 1997, 27(5): 460−473. [28] 邹志利. 高阶Boussinesq水波方程的改进[J]. 中国科学: E辑, 1999, 29(1): 87−96.Zou Zhili. Improvement of higher order Boussinesq wave equations[J]. Science in China : Series E, 1999, 29(1): 87−96. [29] 邹志利. 适合复杂地形的高阶Boussinesq水波方程[J]. 海洋学报, 2001, 23(1): 109−119.Zou Zhili. Higher-order Boussinesq equations for rapidly varying topography[J]. Haiyang Xuebao, 2001, 23(1): 109−119. [30] Gobbi M F, Kirby J T, Wei G. A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4[J]. Journal of Fluid Mechanics, 2000, 405: 181−210. doi: 10.1017/S0022112099007247 [31] Zou Z L, Fang K Z. Alternative forms of the higher-order Boussinesq equations: derivations and validations[J]. Coastal Engineering, 2008, 55(6): 506−521. doi: 10.1016/j.coastaleng.2008.02.001 [32] Lynett P J, Liu P L F. Linear analysis of the multi-layer model[J]. Coastal Engineering, 2004, 51(5/6): 439−454. [33] Liu Z B, Fang K Z. Two-layer Boussinesq models for coastal water waves[J]. Wave Motion, 2015, 57: 88−111. doi: 10.1016/j.wavemoti.2015.03.006 [34] 林建国, 邱大洪. 二阶非线性与色散性的Boussinesq类方程[J]. 中国科学: E辑, 1998, 28(6): 567−573.Lin Jianguo, Qiu Dahong. Boussinesq wave equations with second order nonlinear and dispersive[J]. Science in China: Series E, 1998, 28(6): 567−573. [35] Hong G W. High-order models of nonlinear and dispersive wave in water of varying depth with arbitrary sloping bottom[J]. China Ocean Engineering, 1997, 11(3): 243−260. [36] Kennedy A B, Kirby J T, Chen Q, et al. Boussinesq-type equations with improved nonlinear performance[J]. Wave Motion, 2001, 33(3): 225−243. doi: 10.1016/S0165-2125(00)00071-8 [37] 刘忠波, 房克照, 邹志利. 近似到O(μ2)阶完全非线性的Boussinesq水波方程[J]. 哈尔滨工程大学学报, 2012, 33(5): 556−561. doi: 10.3969/j.issn.1006-7043.201109026Liu Zhongbo, Fang Kezhao, Zou Zhili. Boussinesq wave equations with fully nonlinear characteristics at order O(μ2)[J]. Journal of Harbin Engineering University, 2012, 33(5): 556−561. doi: 10.3969/j.issn.1006-7043.201109026 [38] Fang K Z, Liu Z B, Gui Q Q, et al. Alternative forms of enhanced Boussinesq equations with improved nonlinearity[J]. Mathematical Problems in Engineering, 2013: 160749. [39] Agnon Y, Madsen P A, Schäffer H A. A new approach to high order Boussinesq models[J]. Journal of Fluid Mechanics, 1999, 399: 319−333. doi: 10.1017/S0022112099006394 [40] Madsen P A, Bingham H B, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water[J]. Journal of Fluid Mechanics, 2002, 462: 1−30. doi: 10.1017/S0022112002008467 [41] Madsen P A, Bingham H B, Schäffer H A. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2033): 1075−1104. doi: 10.1098/rspa.2002.1067 [42] Chazel F, Benoit M, Ern A, et al. A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2010, 465(2108): 2319−2346. [43] 刘忠波, 房克照, 孙昭晨. 适合极端深水的双层高阶Boussinesq水波方程[J]. 哈尔滨工程大学学报, 2016, 37(8): 997−1002.Liu Zhongbo, Fang Kezhao, Sun Zhaochen. Two-layer high-order Boussinesq model for water waves in extremely deep water[J]. Journal of Harbin Engineering University, 2016, 37(8): 997−1002. [44] Liu Z B, Fang K Z. A new two-layer Boussinesq model for coastal waves from deep to shallow water: derivation and analysis[J]. Wave Motion, 2016, 67: 1−14. doi: 10.1016/j.wavemoti.2016.07.002 [45] Liu Z B, Fang K Z, Cheng Y Z. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed[J]. Journal of Fluid Mechanics, 2018, 842: 323−853. doi: 10.1017/jfm.2018.99 [46] Cruz E C, Isobe M, Watanabe A. Boussinesq equations for wave transformation on porous beds[J]. Coastal Engineering, 1997, 30(1/2): 125−156. [47] Hsiao S C, Liu P L F, Chen Y Z. Nonlinear water waves propagating over a permeable bed[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2022): 1291−1322. doi: 10.1098/rspa.2001.0903 [48] Chen Q. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds[J]. Journal of Engineering Mechanics, 2006, 132(2): 220−230. doi: 10.1061/(ASCE)0733-9399(2006)132:2(220) [49] 刘忠波, 孙昭晨. 波浪在渗透海床上传播的数学模型[J]. 中国科技论文在线, 2011, 6(5): 374−379.Liu Zhongbo, Sun Zhaochen. Wave propagating model over a porous seabed[J]. Sciencepaper Online, 2011, 6(5): 374−379. [50] 刘忠波, 房克照, 孙昭晨. 适合渗透海床上的Boussinesq水波数学模型[J]. 广西大学学报: 自然科学版, 2012, 37(5): 870−875.Liu Zhongbo, Fang Kezhao, Sun Zhaochen. A Boussinesq model for water waves over permeable seabed[J]. Journal of Guangxi University: Natural Science Edition, 2012, 37(5): 870−875. [51] 刘忠波, 孙昭晨, 房克照. 波浪在渗透海床上传播的数学模型及其验证[J]. 大连理工大学学报, 2013, 53(3): 417−422. doi: 10.7511/dllgxb201303017Liu Zhongbo, Sun Zhaochen, Fang Kezhao. Mathematical model for wave propagation over a porous seabed and its numerical validation[J]. Journal of Dalian University of Technology, 2013, 53(3): 417−422. doi: 10.7511/dllgxb201303017 [52] 刘忠波, 房克照, 孙昭晨. 适合可渗海床上波浪传播的高阶Boussinesq方程[J]. 哈尔滨工程大学学报, 2013, 34(9): 1100−1107.Liu Zhongbo, Fang Kezhao, Sun Zhaochen. High order Boussinesq equations for wave propagation over permeable seabed[J]. Journal of Harbin Engineering University, 2013, 34(9): 1100−1107. [53] Hsiao S C, Hu K C, Hwung H H. Extended Boussinesq equations for water-wave propagation in porous media[J]. Journal of Engineering Mechanics, 2010, 136(5): 625−640. doi: 10.1061/(ASCE)EM.1943-7889.0000098 [54] 刘忠波, 房克照, 孙昭晨, 等. 双层多孔介质中波浪传播的高阶Boussinesq方程[C]//第十六届海洋(岸)工程学术讨论会论文集. 北京: 海洋出版社, 2013: 597-605.Liu Zhongbo, Fang Kezhao, Sun Zhaochen, et al. Higher order Boussinesq equation for wave propagation in double layer porous media[C]//Proceedings of the 16th China Oceanographic (Offshore) Engineering Symposium. Beijing : China Ocean Press, 2013: 597-605. [55] Choi W, Camassa R. Weakly nonlinear internal waves in a two-fluid system[J]. Journal of Fluid Mechanics, 1996, 313: 83−103. doi: 10.1017/S0022112096002133 [56] Choi W, Camassa R. Fully nonlinear internal waves in a two-fluid system[J]. Journal of Fluid Mechanics, 1999, 396: 1−36. doi: 10.1017/S0022112099005820 [57] Lynett P J, Liu P L F. A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry[J]. Wave Motion, 2002, 36(3): 221−240. doi: 10.1016/S0165-2125(01)00115-9 [58] Song J B. A set of Boussinesq-type equations for interfacial internal waves in two-layer stratified fluid[J]. Chinese Physics, 2006, 15(12): 2796−2803. doi: 10.1088/1009-1963/15/12/006 [59] Liu C M, Lin M C, Kong C H. Essential properties of Boussinesq equations for internal and surface waves in a two-fluid system[J]. Ocean Engineering, 2008, 35(2): 230−246. doi: 10.1016/j.oceaneng.2007.08.006 [60] Yang H L, Yang L G, Song J B, et al. Higher-order Boussinesq-type equations for interfacial waves in a two-fluid system[J]. Acta Oceanologica Sinica, 2009, 28(4): 118−124. [61] Liu P L F, Wang X M. A multi-layer model for nonlinear internal wave propagation in shallow water[J]. Journal of Fluid Mechanics, 2012, 695: 341−365. doi: 10.1017/jfm.2012.24 [62] Brocchini M. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2013, 469(2160): 20130496. doi: 10.1098/rspa.2013.0496 [63] Kirby J T. Boussinesq models and their application to coastal processes across a wide range of scales[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(6): 03116005. doi: 10.1061/(ASCE)WW.1943-5460.0000350 [64] Tavakkol S, Lynett P. Celeris: a GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization[J]. Computer Physics Communications, 2017, 217: 117−127. doi: 10.1016/j.cpc.2017.03.002 [65] Chen Q, Dalrymple R A, Kirby J T, et al. Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20617−20637. doi: 10.1029/1999JC900154 [66] Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of longshore currents[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3362. doi: 10.1029/2002JC001308 [67] 房克照, 邹志利, 刘忠波. 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26(4): 479−486.Fang Kezhao, Zou Zhili, Liu Zhongbo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479−486. [68] 房克照, 刘忠波, 邹志利, 等. 波生沿岸流数值模拟[J]. 水科学进展, 2013, 24(2): 258−265.Fang Kezhao, Liu Zhongbo, Zou Zhili, et al. Numerical simulation of longshore currents[J]. Advances in Water Science, 2013, 24(2): 258−265. [69] 邹志利. 含强水流高阶Boussinesq水波方程[J]. 海洋学报, 2000, 22(4): 41−50.Zou Zhili. Higher-order Boussinesq equations with strong currents[J]. Haiyang Xuebao, 2000, 22(4): 41−50. [70] Fuhrman D R, Madsen P A. Tsunami generation, propagation, and run-up with a high-order Boussinesq model[J]. Coastal Engineering, 2009, 56(7): 747−758. doi: 10.1016/j.coastaleng.2009.02.004 [71] Zhao X, Wang B H, Liu H. Modelling the submarine mass failure induced Tsunamis by Boussinesq equations[J]. Journal of Asian Earth Sciences, 2009, 36(1): 47−55. doi: 10.1016/j.jseaes.2008.12.005 [72] Zhou H Q, Teng M H. Extended fourth-order depth-integrated model for water waves and currents generated by submarine landslides[J]. Journal of Engineering Mechanics, 2010, 136(4): 506−516. doi: 10.1061/(ASCE)EM.1943-7889.0000087 [73] Lynet P, Liu P L F. A numerical study of submarine-landslide-generated waves and run-up[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2028): 2885−2910. doi: 10.1098/rspa.2002.0973 [74] Zou Z L, Liu Z B, Fang K Z. Further improvements to the higher-order Boussinesq equations: bragg reflection[J]. Coastal Engineering, 2009, 56(5/6): 672−687. [75] Qi P, Wang Y X. Hydraulic modeling of a curtain-walled dissipater by the coupling of RANS and Boussinesq equations[J]. China Ocean Engineering, 2002, 16(2): 201−210. -