留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取

梁超 刘利 刘建强 邹斌 邹亚荣 崔松雪

梁超,刘利,刘建强,等. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取[J]. 海洋学报,2020,42(4):104–112,doi:10.3969/j.issn.0253−4193.2020.04.012
引用本文: 梁超,刘利,刘建强,等. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取[J]. 海洋学报,2020,42(4):104–112,doi:10.3969/j. issn.0253−4193.2020.04.012
Liang Chao,Liu Li,Liu Jianqiang, et al. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao,2020, 42(4):104–112,doi:10.3969/j.issn.0253−4193.2020.04.012
Citation: Liang Chao,Liu Li,Liu Jianqiang, et al. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao,2020, 42(4):104–112,doi:10.3969/j.issn.0253−4193.2020.04.012

基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取

doi: 10.3969/j.issn.0253-4193.2020.04.012
基金项目: 国家重点研发计划(2018YFB0505001-04)。
详细信息
    作者简介:

    梁超(1985-),男,陕西省咸阳市人,主要研究方向为卫星海洋遥感应用。E-mail:liangchao@mail.nsoas.org.cn

    通讯作者:

    刘利(1984-),女,江苏省淮安市人,工程师,主要从事遥感数据分析与应用研究。E-mail:liuli03rs@163.com

  • 中图分类号: P715.6

Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data

  • 摘要: 本文基于广西山口国家红树林生态自然保护区的HY-1C卫星的海岸带成像仪(Coastal Zone Imager,CZI)影像,分析了红树林与一般陆地植被的光谱特征及其光谱指数的相关性,采用归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)、归一化差异水分指数(Normalized Difference Water Index,NDWI)、大气阻抗植被指数(Atmospheric Impedance Vegetation Index,ARVI)及利用CZI波段构建的光谱斜率比(CZI Visible Spectrum Slope Ratio,CVSSR)4个指数替代CZI原始波段形成重构数据,基于重构数据的最小噪声分离变换(Minimum Noise Fraction Rotation,MNF)结果分量,建立决策树并实现了红树林信息的自动提取。研究结果表明:结合本文所选光谱指数重构数据及MNF变换方法,能够有效增强CZI影像上红树林与一般陆地植被的光谱差异,基于MNF变换分量建立的决策树可有效提取红树林信息,经与专家解译结果比对,本文方法面积准确率达90%以上;经随机样本点验证,总体检测精度为88%。
  • 图  1  研究区位置与HY-1C卫星CZI原始影像

    Fig.  1  Study area location and the CZI original image of HY-1C satellite

    图  2  本文研究方法流程图

    Fig.  2  The research flow chart

    图  3  CZI影像上红树林(a)与一般陆地植被(b)光谱曲线

    Fig.  3  Spectral curves of mangrove (a) and general terrestrial vegetation (b) on CZI image

    图  4  红树林(a)与一般陆地植被(b)表观反射率分布直方图

    Fig.  4  Histograms of apparent reflectance distribution of mangroves (a) and general terrestrial vegetation (b)

    图  5  光谱指数重构数据样本直方图

    Fig.  5  Histograms of the spectral index reconstruction data

    图  6  重构后数据MNF的4个分量

    Fig.  6  The 4 MNF components of the reconstruction data

    图  7  光谱指数重构数据MNF结果样本直方图

    Fig.  7  Histograms of MNF components of the spectral index reconstruction data

    图  8  红树林提取决策树

    Fig.  8  Decision tree for mangrove extracting

    图  9  研究区红树林提取结果分布

    Fig.  9  Mangrove extraction results

    表  1  HY-1C卫星CZI传感器主要技术指标

    Tab.  1  The main technical indicators of HY-1C satellite CZI sensor

    波段波长范围/nm空间分辨率/m
    1420~50050
    2520~60050
    3610~69050
    4760~89050
    下载: 导出CSV

    表  2  本文使用的植被光谱指数列表

    Tab.  2  List of vegetation spectral indices used in this paper

    名称英文全称简写公式选择依据
    归一化差值植被指数Normalized Difference Vegetation IndexNDVI$(NIR-R)/(NIR+R) $对绿色植被敏感,常用于植被状态研究
    比值植被指数Ratio Vegetation IndexRVI$R/NIR $对浓密覆盖植被敏感
    红色植被指数Red Vegetation IndexRI$(R-G)/(R+G) $对土壤颜色影响的植被指数的校正
    结构不敏感色素指数Structure Insensitive Pigment IndexSIPI$(NIR-B)/(NIR+R) $标识植被冠层胁迫性的增加
    归一化差异水分指数Normalized Difference Water IndexNDWI$(G-NIR)/(G+NIR) $对土壤湿度敏感
    归一化差异绿度指数Normalized Difference Greenness IndexNDGI$(G-R)/(G+R) $用于检验不同活力植被形式
    修改型土壤调节植被指数Modified Soil-adjusted Vegetation IndexMSAVI$[2NIR + 1 - \sqrt { { {\left( {2NIR + 1} \right)}^2} - 8\left( {NIR - R} \right)} ]/2$调整土壤背景对植被指数的影响,并减少裸土的影响
    增强型植被指数Enhanced Vegetation IndexEVI$2.5[(NIR-R)/(NIR+6R-7.5B+1)] $同时修订土壤背景和大气噪声的影响
    大气阻抗植被指数Atmospheric Impedance Vegetation IndexARVI$[NIR-(2R-B)]/[NIR+(2R-B)] $减少大气散射对植被指数的影响
    CZI蓝红波段比CZI Blue-Red Wave Segment RatioCBRI$(B-R)/(B+R) $反映不同地物在CZI波段之间差异性变化
    CZI蓝绿波段比CZI Blue-Green Wave Segment RatioCBGI$(B-G)/(B+G) $反映不同地物在CZI波段之间差异性变化
    CZI近红外蓝光波段比CZI Near Infrared-Blue Wave Segment RatioCNBI$(NIR-B)/(NIR+B) $反映不同地物在CZI波段之间差异性变化
    CZI可见光光谱斜率比CZI Visible Spectrum Slope RatioCVSSR$\left( {\dfrac{{R - G}}{{650 - 560}}} \right)\bigg/\left( {\dfrac{{G - B}}{{560 - 460}}} \right)$反映不同植被在可见光波段的光谱形态差异
    注:NIR代表近红外波段,R代表红波段,G代表绿波段,B代表蓝波段。
    下载: 导出CSV

    表  3  NDVI与其他光谱指数间的相关系数

    Tab.  3  Correlation coefficients between NDVI and the other spectral indices

    光谱指数与NDVI之间相关系数光谱指数与NDVI之间相关系数
    RVI−0.985MSAVI0.978
    RI0.413EVI0.989
    SIPI0.989CBRI−0.004
    NDWI−0.996CBGI0.608
    NDGI−0.413ARVI−0.238
    CNBI0.996CVSSR−0.063
    下载: 导出CSV
  • [1] Aschbacher J, Ofren R, Delsol J P, et al. An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies: preliminary results[J]. Hydrobiologia, 1995, 295: 285−294. doi: 10.1007/BF00029135
    [2] Green E P, Clark C D, Mumby A J, et al. Remote sensing techniques for mangrove mapping[J]. International Journal of Remote Sensing, 1998, 19(5): 935−956. doi: 10.1080/014311698215801
    [3] Green E P, Mumby P J, Edwards A J, et al. The assessment of mangrove areas using high resolution multispectral airborne imagery[J]. Journal of Coastal Research, 1998, 14(2): 433−443.
    [4] Wang Lanfa, Sousa W, Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004, 25(24): 5655−5668. doi: 10.1080/014311602331291215
    [5] 肖海燕, 曾辉, 昝启杰, 等. 基于高光谱数据和专家决策法提取红树林群落类型信息[J]. 遥感学报, 2007, 11(4): 531−537. doi: 10.11834/jrs.20070473

    Xiao Haiyan, Zeng Hui, Zan Qijie, et al. Decision tree model in extraction of mangrove community information using hyperspectral image data[J]. Journal of Remote Sensing, 2007, 11(4): 531−537. doi: 10.11834/jrs.20070473
    [6] 张雪红. 基于知识与规则的红树林遥感信息提取[J]. 南京信息工程大学学报, 2011, 3(4): 341−345. doi: 10.3969/j.issn.1674-7070.2011.04.005

    Zhang Xuehong. Remote sensing information extraction of mangrove based on knowledge and rules[J]. Journal of Nanjing University of Information Science & Technology, 2011, 3(4): 341−345. doi: 10.3969/j.issn.1674-7070.2011.04.005
    [7] Heumann B W. Satellite remote sensing of mangrove forests: recent advances and future opportunities[J]. Progress in Physical Geography: Earth and Environment, 2011, 35(1): 87−108. doi: 10.1177/0309133310385371
    [8] 张雪红. 基于决策树方法的Landsat8 OLI影像红树林信息自动提取[J]. 国土资源遥感, 2016, 28(2): 182−187. doi: 10.6046/gtzyyg.2016.02.28

    Zhang Xuehong. Decision tree algorithm of automatically extracting mangrove forests information from Landsat 8 OLI imagery[J]. Remote Sensing for Land & Resources, 2016, 28(2): 182−187. doi: 10.6046/gtzyyg.2016.02.28
    [9] Giri C. Observation and monitoring of mangrove forests using remote sensing: opportunities and Challenges[J]. Remote Sensing, 2016, 8(9): 783. doi: 10.3390/rs8090783
    [10] Cao Jingjing, Leng Wanchun, Liu Kai, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing, 2018, 10(1): 89.
    [11] Abdel-Hamid A, Dubovyk O, El-Magd I, et al. Mapping mangroves extents on the red sea coastline in Egypt using polarimetric SAR and high resolution optical remote sensing data[J]. Sustainability, 2018, 10(3): 646. doi: 10.3390/su10030646
    [12] Zulfa A W, Norizah K. Remotely sensed imagery data application in mangrove forest: a review[J]. Pertanika Journal of Science & Technology, 2018, 26(3): 899−922.
    [13] Wang Le, Jia Mingming, Yin Dameng, et al. A review of remote sensing for mangrove forests: 1956-2018[J]. Remote Sensing of Environment, 2019, 231: 111223. doi: 10.1016/j.rse.2019.111223
    [14] Pham T D, Yokoya N, Bui D T, et al. Remote sensing approaches for monitoring mangrove species, structure, and biomass: opportunities and challenges[J]. Remote Sensing, 2019, 11(3): 230. doi: 10.3390/rs11030230
    [15] Markham B L, Barker J L. Thematic Mapper bandpass solar exoatmospheric irradiances[J]. International Journal of Remote Sensing, 1987, 8(3): 517−523. doi: 10.1080/01431168708948658
    [16] 田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13(4): 327−333. doi: 10.3321/j.issn:1001-8166.1998.04.002

    Tian Qingjiu, Min Xiangjun. Advances in study on vegetation indices[J]. Advance in Earth Sciences, 1998, 13(4): 327−333. doi: 10.3321/j.issn:1001-8166.1998.04.002
    [17] 郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003, 21(4): 71−75.

    Guo Ni. Vegetation index and its advances[J]. Arid Meteorology, 2003, 21(4): 71−75.
    [18] Muhsoni F F, Sambah A B, Mahmudi M, et al. Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery[J]. International Journal of Geomate, 2018, 14(45): 42−51.
    [19] Gupta K, Mukhopadhyay A, Giri S, et al. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery[J]. MethodsX, 2018, 5: 1129−1139. doi: 10.1016/j.mex.2018.09.011
    [20] Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65−74. doi: 10.1109/36.3001
    [21] Boardman J W, Kruse F A. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada[C]//Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing. Ann Arbor, MI: Environmental Research Institute of Michigan, 1994: 407−418.
    [22] Richards J A. Remote Sensing Digital Image Analysis[M]. Berlin: Springer, 2013: 186−189.
    [23] Canty M J. Image Analysis, Classification and Change Detection in Remote Sensing: with Algorithms for ENVI/IDL[M]. New York: CRC Press, 2014.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  80
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-08-21
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回