留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋酸化、暖化对两种鹿角珊瑚幼虫附着及幼体存活的影响

孙有方 江雷 雷新明 张浴阳 俞晓磊 黄晖

孙有方,江雷,雷新明,等. 海洋酸化、暖化对两种鹿角珊瑚幼虫附着及幼体存活的影响[J]. 海洋学报,2020,42(4):96–103,doi:10.3969/j.issn.0253−4193.2020.04.011
引用本文: 孙有方,江雷,雷新明,等. 海洋酸化、暖化对两种鹿角珊瑚幼虫附着及幼体存活的影响[J]. 海洋学报,2020,42(4):96–103,doi:10.3969/j. issn.0253−4193.2020.04.011
Sun Youfang,Jiang Lei,Lei Xinming, et al. Effects of ocean acidification and warming on the larvae settlement and post-settlement survival of two reef-building corals[J]. Haiyang Xuebao,2020, 42(4):96–103,doi:10.3969/j.issn.0253−4193.2020.04.011
Citation: Sun Youfang,Jiang Lei,Lei Xinming, et al. Effects of ocean acidification and warming on the larvae settlement and post-settlement survival of two reef-building corals[J]. Haiyang Xuebao,2020, 42(4):96–103,doi:10.3969/j.issn.0253−4193.2020.04.011

海洋酸化、暖化对两种鹿角珊瑚幼虫附着及幼体存活的影响

doi: 10.3969/j.issn.0253-4193.2020.04.011
基金项目: 国家自然科学基金(41676150,41876192);国家重点研发计划(2017YFC0506301);中国科学院战略性先导科技专项(A类)(XDA13020402,XDA13020201);广东省省级科技计划项目(2017B0303014052);广东省基础与应用基础研究基金(2019A1515011532)。
详细信息
    作者简介:

    孙有方(1990—),男,山东省菏泽市人,博士研究生,研究方向为珊瑚生物学。E-mail:sunyoufang15@mails.ucas.edu.cn

    通讯作者:

    黄晖,研究员,主要从事珊瑚生物学与珊瑚礁生态学研究。E-mail:huanghui@scsio.ac.cn

  • 中图分类号: P714+.5; Q958.8

Effects of ocean acidification and warming on the larvae settlement and post-settlement survival of two reef-building corals

  • 摘要: 大气CO2浓度持续升高导致海洋酸化和暖化影响着造礁石珊瑚和珊瑚礁生态系统。为探明造礁石珊瑚早期生活史对海洋酸化和暖化的生理学响应,本文研究了温度(约28°C, 约30°C)和pCO2(约570 µatm, 约1 300 μatm)以及两者协同作用对简单鹿角珊瑚(Acropora austera)和中间鹿角珊瑚(A. intermedia)早期生活史的影响。实验结果表明,升温(+约2.5°C)和酸化(约1 300 μatm)对两种鹿角珊瑚幼虫的附着率和死亡率均无显著影响。酸化显著降低了简单鹿角珊瑚幼体存活率(25.87%),但并不显著影响中间鹿角珊瑚幼体的存活率;升温对两种鹿角珊瑚幼体存活率无显著影响。升温(+约2.5°C)、酸化(约1 300 μatm)对简单、中间鹿角珊瑚幼虫的存活和附着过程的影响较小,但是酸化对简单鹿角珊瑚幼体存活的影响高于暖化。本文结果表明,珊瑚补充过程对海洋酸化和暖化的响应可能具有种类特异性,气候变化将逐渐改变造礁石珊瑚的群落结构。
  • 图  1  两种珊瑚幼虫在不同条件下的附着率和死亡率

    Fig.  1  Percentages of settlement and larval mortality of two species of scleractinian coral larvae at different conditions

    图  2  两种珊瑚幼体在不同处理下的存活率

    Fig.  2  Percentages of survival of two species of scleractinian coral juvenile at different conditions

    表  1  实验期间各个处理海水理化因子的平均水平

    Tab.  1  Experimental seawater conditions for each treatment

    处理T/℃SpHpCO2 /µatmTA/µmol·kg−1ΩArag
    ATAC27.95±0.9232.98±0.708.05±0.07571.90±14.532 224.85±19.432.37±0.03
    ATHC27.80±0.2132.90±0.267.72±0.131 338.43±43.872 212.67±13.141.15±0.04
    HTAC30.35±0.8033.23±0.618.05±0.10576.77±16.762 221.67±13.432.52±0.05
    HTHC30.05±0.7633.18±0.317.75±0.151 290.85±52.032 245.83±8.351.33±0.04
      注:数据表示为均值±标准差。海水理化参数为温度(T)、盐度(S)、pH、二氧化碳分压(pCO2)、总碱度(Total Alkalinity, TA)和文石饱和度(ΩArag)。
    下载: 导出CSV

    表  2  双因素方差分析结果:温度、pCO2对两种珊瑚幼虫附着率、死亡率及附着后存活的影响

    Tab.  2  Results of two-way ANOVAs testing the effects of elevated temperature, pCO2 on the percentages of settlement, mortality, post-settlement survival of two coral species

    变化因素离均差平方和自由度均方F统计量p
    简单鹿角珊瑚幼虫附着率温度0.03410.0340.7150.405
    pH0.13110.1312.7270.110
    温度和pH0.00410.0040.0790.780
    误差1.348280.048
    中间鹿角珊瑚幼虫附着率温度0.04610.0461.2770.272
    pH0.02310.0230.6510.429
    温度和pH0.07610.0762.1110.162
    误差0.720200.036
    简单鹿角珊瑚幼虫死亡率温度0.12510.1252.7570.108
    pH0.11310.1132.4880.126
    温度和pH0.00510.0050.1100.742
    误差1.269280.045
    中间鹿角珊瑚幼虫死亡率温度0.00410.0040.0660.800
    pH0.02710.0270.4680.502
    温度和pH0.00210.0020.0290.866
    误差1.139200.057
    简单鹿角珊瑚幼体存活率温度6.1×10−516.1×10−50.0010.979
    pH0.47010.4705.4240.028
    温度和pH0.00110.0010.0130.912
    误差2.342270.087
    中间鹿角珊瑚幼体存活率温度0.04610.0460.4110.530
    pH0.06710.0670.5920.452
    温度和pH0.21910.2191.9340.182
    误差1.922170.113
    下载: 导出CSV
  • [1] Orr J C. Recent and future changes in ocean carbonate chemistry[M]//Gattuso J P, Hansson L. Ocean Acidification. Oxford: Oxford University Press, 2011: 41−66.
    [2] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367−371. doi: 10.1126/science.1097403
    [3] Collins M, Knutti R, Arblaser J, et al. Long-term climate change: projections, commitments and irreversibility[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
    [4] Friedlingstein P, Andrew R M, Rogelj J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets[J]. Nature Geoscience, 2014, 7(10): 709−715. doi: 10.1038/ngeo2248
    [5] IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014.
    [6] Huang Hui, Yuan Xiangcheng, Cai Weijun, et al. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses[J]. Marine Ecology Progress Series, 2014, 502: 145−156. doi: 10.3354/meps10720
    [7] Watson S A, Southgate P C, Miller G M, et al. Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa[J]. Molluscan Research, 2012, 32(3): 177−180.
    [8] Timmins-Schiffman E, O'Donnell M J, Friedman C S, et al. Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas[J]. Marine Biology, 2013, 160(8): 1973−1982. doi: 10.1007/s00227-012-2055-x
    [9] Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707
    [10] Zheng Xinqing, Kuo Fuwen, Pan Ke, et al. Different calcification responses of two hermatypic corals to CO2-driven ocean acidification[J]. Environmental Science and Pollution Research, 2019, 26(7): 30596−30602 . doi: 10.1007/s11356-018-1376-9
    [11] 郑新庆, 郭富雯, 刘昕明, 等. 海洋酸化没有显著影响成体鹿角杯形珊瑚的钙化作用和光合能力[J]. 海洋学报, 2015, 37(10): 59−68.

    Zheng Xinqing, Kuo Fuwen, Liu Xinming, et al. Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis[J]. Haiyang Xuebao, 2015, 37(10): 59−68.
    [12] Cossins A R, Bowler K. Temperature Biology of Animals[M]. Dordrecht, Netherlands: Springer, 1987.
    [13] Ritson-Williams R, Arnold S N, Fogarty N D, et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs[J]. Smithsonian Contributions to the Marine Sciences, 2009, 38: 437−457.
    [14] Harrison P L. Sexual reproduction of scleractinian corals[M]//Dubinsky Z, Stambler N. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer, 2011: 59−85.
    [15] Edmunds P, Gates R, Gleason D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances[J]. Marine Biology, 2001, 139(5): 981−989. doi: 10.1007/s002270100634
    [16] Hughes T P, Tanner J E. Recruitment failure, life histories, and long-term decline of Caribbean corals[J]. Ecology, 2000, 81(8): 2250−2263. doi: 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2
    [17] Richmond R H. Reproduction and recruitment in corals: critical links in the persistence of reefs[M]//Birkeland C. Life and Death of Coral Reefs. New York: Chapman and Hall, 1997.
    [18] Harrison P L, Wallace C C. Reproduction, dispersal and recruitment of scleractinian corals[M]//Dubinsky Z. Coral Reefs Ecosystems. Amsterdam: Elsevier, 1990: 133−207.
    [19] Randall C J, Szmant A M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper)[J]. Coral Reefs, 2009, 28(2): 537−545.
    [20] Hillyer K E, Dias D A, Lutz A, et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera[J]. Coral Reefs, 2017, 36(1): 105−118. doi: 10.1007/s00338-016-1508-y
    [21] Nozawa Y, Harrison P L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis[J]. Marine Biology, 2007, 152(5): 1181−1185. doi: 10.1007/s00227-007-0765-2
    [22] Jiang Lei, Sun Youfang, Zhang Yuyang, et al. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis[J]. Biogeosciences, 2017, 14(24): 5741−5752. doi: 10.5194/bg-14-5741-2017
    [23] Wall C B, Fan T Y, Edmunds P J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum[J]. Coral Reefs, 2014, 33(1): 119−130. doi: 10.1007/s00338-013-1085-2
    [24] Albright R, Mason B, Miller M, et al. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20400−20404. doi: 10.1073/pnas.1007273107
    [25] Doropoulos C, Diaz-Pulido G. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae[J]. Marine Ecology Progress Series, 2013, 475: 93−99. doi: 10.3354/meps10096
    [26] Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides[J]. Global Change Biology, 2011, 17(7): 2478−2487. doi: 10.1111/j.1365-2486.2011.02404.x
    [27] Foster T, Gilmour J P, Chua C M, et al. Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera[J]. Coral Reefs, 2015, 34(4): 1217−1226. doi: 10.1007/s00338-015-1342-7
    [28] Webster N S, Webb R I, Ridd M J, et al. The effects of copper on the microbial community of a coral reef sponge[J]. Environmental Microbiology, 2001, 3(1): 19−31. doi: 10.1046/j.1462-2920.2001.00155.x
    [29] Tebben J, Tapiolas D M, Motti C A, et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium[J]. PLoS One, 2011, 6(4): e19082. doi: 10.1371/journal.pone.0019082
    [30] Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis[J]. Coral Reefs, 1999, 18(3): 273−279. doi: 10.1007/s003380050193
    [31] Siboni N, Abrego D, Motti C A, et al. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora[J]. PLoS One, 2014, 9(3): e91082. doi: 10.1371/journal.pone.0091082
    [32] Li Xiubao, Liu Sheng, Huang Hui, et al. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China[J]. Aquatic Ecosystem Health & Management, 2012, 15(2): 227−233.
    [33] Baird A H, Gilmour J P, Kamiki T M, et al. Temperature tolerance of symbiotic and non-symbiotic coral larvae[C]//Proceedings of the 10th International Coral Reef Symposium. Okinawa, Japan: ICRS, 2006.
    [34] Yakovleva I, Baird A H, Yamamoto H H, et al. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures[J]. Marine Ecology Progress Series, 2009, 378: 105−112. doi: 10.3354/meps07857
    [35] 江雷, 黄晖, 张浴阳, 等. 海水升温对壮实鹿角珊瑚幼虫存活和附着的影响[J]. 应用海洋学学报, 2016, 35(2): 217−222. doi: 10.3969/J.ISSN.2095-4972.2016.02.010

    Jiang Lei, Huang Hui, Zhang Yuyang, et al. Effects of elevated temperature on larval survival and settlement of the broadcast spawning coral Acropora robust[J]. Journal of Applied Oceanography, 2016, 35(2): 217−222. doi: 10.3969/J.ISSN.2095-4972.2016.02.010
    [36] Olsen K, Ritson-Williams R, Paul V J, et al. Combined effects of macroalgal presence and elevated temperature on the early life-history stages of a common Caribbean coral[J]. Marine Ecology Progress Series, 2014, 509: 181−191. doi: 10.3354/meps10880
    [37] Viyakarn V, Lalitpattarakit W, Chinfak N, et al. Effect of lower pH on settlement and development of coral, Pocillopora damicornis (Linnaeus, 1758)[J]. Ocean Science Journal, 2015, 50(2): 475−480. doi: 10.1007/s12601-015-0043-z
    [38] Suwa R, Nakamura M, Morita M, et al. Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora)[J]. Fisheries Science, 2010, 76(1): 93−99. doi: 10.1007/s12562-009-0189-7
    [39] Putnam H M, Mayfield A B, Fan T Y, et al. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2[J]. Marine Biology, 2013, 160(8): 2157−2173. doi: 10.1007/s00227-012-2129-9
    [40] Cumbo V R, Fan T Y, Edmunds P J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2[J]. Journal of Experimental Marine Biology and Ecology, 2013, 439: 100−107. doi: 10.1016/j.jembe.2012.10.019
    [41] Marshall D J. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history[J]. Ecology, 2008, 89(2): 418−427. doi: 10.1890/07-0449.1
    [42] Jiang Lei, Huang Hui, Yuan Xiangcheng, et al. Effects of elevated pCO2 on the post-settlement development of Pocillopora damicornis[J]. Journal of Experimental Marine Biology and Ecology, 2015, 473: 169−175. doi: 10.1016/j.jembe.2015.09.004
    [43] Jiang Lei, Zhang Fang, Guo Minglan, et al. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost[J]. Coral Reefs, 2018, 37(1): 71−79. doi: 10.1007/s00338-017-1634-1
    [44] Anlauf H, D'Croz L, O'Dea A. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative[J]. Journal of Experimental Marine Biology and Ecology, 2011, 397(1): 13−20. doi: 10.1016/j.jembe.2010.11.009
    [45] Cohen A L, McCorkle D C, de Putron S, et al. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07005.
    [46] Albright R, Mason B, Langdon C. Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae[J]. Coral Reefs, 2008, 27(3): 485−490. doi: 10.1007/s00338-008-0392-5
    [47] Vermeij M J A, Sandin S A. Density-dependent settlement and mortality structure the earliest life phases of a coral population[J]. Ecology, 2008, 89(7): 1994−2004. doi: 10.1890/07-1296.1
    [48] Hughes T P, Jackson J B C. Population dynamics and life histories of foliaceous corals[J]. Ecological Monographs, 1985, 55(2): 141−166. doi: 10.2307/1942555
    [49] Yuan Xiangcheng, Yuan Tao, Huang Hui, et al. Elevated CO2 delays the early development of scleractinian coral Acropora gemmifera[J]. Scientific Reports, 2018, 8(1): 2787. doi: 10.1038/s41598-018-21267-3
    [50] Moya A, Huisman L, Ball E E, et al. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification[J]. Molecular Ecology, 2012, 21(10): 2440−2454. doi: 10.1111/j.1365-294X.2012.05554.x
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  101
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-05-16
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回