Structure and complexity of Haizhou Bay food web based on topological network analysis
-
摘要: 针对食物网结构与复杂性的研究有助于深入解析食物网的功能、营养动力和能量转化过程。本文根据2011年3−12月在海州湾及其邻近海域进行的5个航次的渔业资源底拖网调查资料以及胃含物分析数据,基于11个拓扑网络指数,构建了海州湾拓扑网络,研究海州湾食物网的结构与复杂性。结果表明,本文分析的海州湾食物网物种数S为93,连接数L为1 021,每个物种的相互作用数量L/S为10.98,连接性L/S2为0.12;顶级物种、中间物种、基础物种的比例分别为29%、69%和2%;食物网的杂食性指数为87%,连接复杂性指数SC为22.20,特征路径长度ChPath为2.11,聚类系数CC为0.23。通过每个物种的相互作用数量和连接性的研究显示,L/S和L/S2的值都处在正常范围内,所以海州湾食物网的复杂性仍保持较高水平。通过物种比例、杂食性指数、连接复杂性指数、特征路径长度、聚类系数对食物网结构分析,发现海州湾食物网结构处于稳定状态,能够在一定程度上抵御外界环境的扰动,保证生态系统功能的正常运行。通过对海州湾食物网结构与复杂性的研究,将为今后海州湾食物网功能的深入研究以及海州湾渔业资源的科学管理提供重要依据。Abstract: Research on the structure and complexity of food webs helps to analyze the function, nutrient dynamics and energy conversion of food webs. Based on the survey data of fishery resources and the analysis of gastric contents in five voyages in Haizhou Bay and its adjacent waters from March to December 2011, this study constructed a Haizhou Bay topology network based on 11 topological network indices. To study the structure and complexity of the Haizhou Bay food network. The results showed that the number of species in the Haizhou Bay food network (S) was 93, the number of connections (L) was 1 021, the number of interactions per species (L/S) was 10.98, the number of connections (L/S2) was 0.12; the proportions of top species, intermediate species, foundation species were 29%, 69% and 2%, respectively; the omnivorous index of food web was 87%; the connection complexity index SC was 22.2; the characteristic path length ChPath was 2.11, and the clustering coefficient CC was 0.23. Studies on the number of interactions and the number of connections in each species showed that the values of L/S and L/S2 were within the normal range, so the complexity of the Haizhou Bay food web remained high. Through the analysis of the structure of the food web by species ratio, omnivorous index, connection complexity index, characteristic path length and clustering coefficient, it was found that the food network structure of Haizhou Bay was in a stable state, and the proportion of basic species was low because the phytoplankton and seaweed groups were not classified. Through the study of the structure and complexity of Haizhou Bay food network, it provides an important basis for the in-depth study of the function of Haizhou Bay food network and the scientific management of Haizhou Bay fishery resources.
-
Key words:
- Haizhou Bay /
- food web complexity /
- food web structure /
- topology network
-
表 1 海州湾食物网物种及其连接数
Tab. 1 Species and links of Haizhou Bay food web
序号 物种名 连接数 序号 物种名 连接数 1 中华安乐虾Eualus sinensis 25 48 鮸Miichthys miiuy 23 2 白姑鱼Pennahia argentata 26 49 纽形动物Nemertean 3 3 斑鰶Konosirus punctatus 6 50 皮氏叫姑鱼Johnius belangeri 32 4 鲳属Pampus sp. 4 51 普氏栉虾虎鱼Rhinogobius giurinus 12 5 赤鼻棱鳀Thryssa chefuensis 16 52 长足七腕虾Heptacarpus futilirostris 8 6 大泷六线鱼Hexagrammos otakii 36 53 其他虾虎鱼Other gobies 24 7 大银鱼Protosalanx hyalocranius 2 54 其他虾类shrimps 46 8 带纹条鳎Zebrias zebra 15 55 枪乌贼Loligo sp. 48 9 带鱼Trichiurus lepturus 32 56 青鳞小沙丁鱼Sardinella zunasi 13 10 戴氏赤虾Metapenaeopsis dalei 25 57 日本鼓虾Alpheus japonicus 42 11 刀鲚Coilia nasus 5 58 鲐Scomber japonicus 10 12 底栖生物Benthos 8 59 日本蟳Charybdis japonica 13 13 真鲷Pagrus major 19 60 舌鳎Soleidae sp. 27 14 鳚杜父鱼Pseudoblennius cottoides 3 61 狮子鱼Liparis sp. 25 15 短鳄齿鱼Champsodon snyderi 15 62 双斑蟳Charybdis bimaculata 17 16 短蛸Octopus ochellatus 18 63 双喙耳乌贼Sepiola birostrata 22 17 方氏云鳚Pholis fangi 25 64 双壳类Bivalves 50 17 凤鲚Coilia mystus 10 65 四盘耳乌贼Euprymna morsei 8 19 浮游动物Zooplankton 74 66 繸鳚Chirolophis japonicus 2 20 浮游植物Phytoplankton 12 67 太平洋褶柔鱼Todarodes pacificus 18 21 腹足类Gastropods 42 68 鳀Engraulis japonicus 30 22 高眼鲽Cleisthenes herzensteini 12 69 绿鳍马面鲀Thamnaconus septentrionalis 10 23 尖海龙Syngnathus acus 8 70 纹缟虾虎鱼Tridentiger trigonocephalus 6 24 海藻Algae 16 71 多鳞鱚Sillago sihama 16 25 海蜇Rhopilema esculenta 2 72 细螯虾Leptochela gracilis 50 26 海蜇虾Latreutes anoplonyx 24 73 细条天竺鲷Apogon lineatus 26 27 褐菖鲉Sebastiscus marmoratus 15 74 鲜明鼓虾Alpheus disinguendus 37 28 褐牙鲆Paralichthys olivaceus 18 75 䲗Callionymidae 26 29 环节动物Polychaetes 46 76 小带鱼Eupleurogrammus muticus 7 表 2 海州湾食物网结构与复杂性指数
Tab. 2 Structure and complexity index of Haizhou Bay food web
食物网
指数物种数(S) 每个物种相互
作用数量(L/S)连接性(L/S2) 顶层物种数(T) 中间物种数(I) 基础物种数(B) 杂食性物种
比例(Omn)连接复杂性
指数(SC)特征路径长度(ChPath) 聚类系数(CC) 数值 93 10.98 0.12 29% 69% 2% 87% 22.20 2.11 0.23 表 3 海州湾与国外其他水域食物网拓扑指数的对比
Tab. 3 Comparison of topological indices of Haizhou Bay and other overseas aquatic food webs
食物网指数 物种数(S) 每个物种相互
作用数量(L/S)连接性(L/S2) 顶层物种数(T) 中间物种数(I) 基础物种数(B) 杂食性物种
比例(Omn)连接复杂性
指数(SC)特征路径
长度(ChPath)聚类系数(CC) 加勒比海珊瑚礁[34] 50 11.1 0.22 0 94 6 86 1.60 0.36 波特湾[28] 91 3.40 0.04 19 47 34 45 1.8 0.08 南极[35] 586 6.80 0.01 23 21 56 41 3.00 0.14 北极[36] 140 6.80 0.05 40 56 14 81 本格拉[37] 29 7.00 0.24 0 93 7 76 1.60 美国东北大陆架[38] 81 19.28 0.24 39.10 科切拉谷[39] 30 13.63 0.45 9.00 勒德格河[40] 40 2.00 0.05 4.10 小石湖[41] 182 13.00 0.07 26.20 海州湾 93 10.98 0.12 29 69 2 87 22.20 2.11 0.23 -
[1] 张硕, 王腾, 符小明, 等. 连云港海州湾渔业生态修复水域生态系统能量流动模型初探[J]. 海洋环境科学, 2015, 34(1): 42−47.Zhang Shuo, Wang Teng, Fu Xiaoming, et al. A primary study on the energy flow in the ecosystem of fishery ecological restoration area in Haizhou Bay, Lianyungang[J]. Marine Environmental Science, 2015, 34(1): 42−47. [2] 金显仕, 窦硕增, 单秀娟, 等. 我国近海渔业资源可持续产出基础研究的热点问题[J]. 渔业科学进展, 2015, 36(1): 124−131. doi: 10.11758/yykxjz.20150119Jin Xianshi, Dou Shuozeng, Shan Xiujuan, et al. Hot spots of frontiers in the research of sustainable yield of Chinese inshore fishery[J]. Progress in Fishery Sciences, 2015, 36(1): 124−131. doi: 10.11758/yykxjz.20150119 [3] 金艳, 刘勇, 袁兴伟, 等. 复杂网络理论在食物网中的应用和研究进展[J]. 海洋渔业, 2018, 40(2): 249−256. doi: 10.3969/j.issn.1004-2490.2018.02.015Jin Yan, Liu Yong, Yuan Xingwei, et al. Review: applications of complex network to food web[J]. Marine Fisheries, 2018, 40(2): 249−256. doi: 10.3969/j.issn.1004-2490.2018.02.015 [4] 林群, 王俊, 袁伟, 等. 捕捞和环境变化对渤海生态系统的影响[J]. 中国水产科学, 2016, 23(3): 619−629.Lin Qun, Wang Jun, Yuan Wei, et al. Effects of fishing and environmental change on the ecosystem of the Bohai Sea[J]. Journal of Fishery Sciences of China, 2016, 23(3): 619−629. [5] 杨涛, 单秀娟, 金显仕, 等. 莱州湾春季鱼类群落关键种的长期变化[J]. 渔业科学进展, 2018, 39(1): 1−11.Yang Tao, Shan Xiujuan, Jin Xianshi, et al. Long-term changes in keystone species in fish community in spring in Laizhou Bay[J]. Progress in Fishery Sciences, 2018, 39(1): 1−11. [6] Allesina S, Alonso D, Pascual M. A general model for food web structure[J]. Science, 2008, 320(5876): 658−661. doi: 10.1126/science.1156269 [7] 邓景耀, 姜卫民, 杨纪明, 等. 渤海主要生物种间关系及食物网的研究[J]. 中国水产科学, 1997, 4(4): 1−7. doi: 10.3321/j.issn:1005-8737.1997.04.001Deng Jingyao, Jiang Weimin, Yang Jiming, et al. Species interaction and food web of major predatory species in the Bohai Sea[J]. Journal of Fishery Sciences of China, 1997, 4(4): 1−7. doi: 10.3321/j.issn:1005-8737.1997.04.001 [8] 王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965−975.Wang Teng, Zhang He, Zhang Hu, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model[J]. Journal of Fishery Sciences of China, 2016, 23(4): 965−975. [9] 郑晓春, 戴小杰, 朱江峰, 等. 太平洋中东部海域大眼金枪鱼胃含物分析[J]. 南方水产科学, 2015, 11(1): 75−80. doi: 10.3969/j.issn.2095-0780.2015.01.011Zheng Xiaochun, Dai Xiaojie, Zhu Jiangfeng, et al. Analysis on stomach content of Bigeye tuna (Thunnus obesus) in the eastern-central Pacific Ocean[J]. South China Fisheries Science, 2015, 11(1): 75−80. doi: 10.3969/j.issn.2095-0780.2015.01.011 [10] 王荣夫, 张崇良, 徐宾铎, 等. 海州湾秋季小眼绿鳍鱼的摄食策略及食物选择性[J]. 中国水产科学, 2018, 25(5): 1059−1070. doi: 10.3724/SP.J.1118.2018.17350Wang Rongfu, Zhang Chongliang, Xu Binduo, et al. Feeding strategy and prey selectivity of Chelidonichthys spinosus during autumn in Haizhou Bay[J]. Journal of Fishery Sciences of China, 2018, 25(5): 1059−1070. doi: 10.3724/SP.J.1118.2018.17350 [11] 程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102−108.Cheng Jisheng, Zhu Jinsheng. A study on the characteristics and trophic levels of the main economic invertebrates in the Yellow Sea[J]. Haiyang Xuebao, 1997, 19(6): 102−108. [12] 杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001, 16(10): 10−19.Yang Jiming. A study on food and trophic levels of Bohai Sea fish[J]. Modern Fisheries Information, 2001, 16(10): 10−19. [13] 唐富江, 刘伟, 王继隆, 等. 兴凯湖大银鱼食物组成与食性转化[J]. 动物学研究, 2013, 34(5): 493−498.Tang Fujiang, Liu Wei, Wang Jilong, et al. Diet composition and transition of clearhead icefish (Protosalanx hyalocranius) in Lake Xingkai[J]. Zoological Research, 2013, 34(5): 493−498. [14] 窦硕增, 杨纪明, 陈大刚. 渤海石鲽、星鲽、高眼鲽及焦氏舌鳎的食性[J]. 水产学报, 1992, 16(2): 162−166.Dou Shuozeng, Yang Jiming, Chen Dagang. Food habits of stone flounder, spotted flounder, high-eyed flounder and red tongue sole in the Bohai Sea[J]. Journal of Fisheries of China, 1992, 16(2): 162−166. [15] 张波. 东、黄海带鱼的摄食习性及随发育的变化[J]. 海洋水产研究, 2004, 25(2): 6−12.Zhang Bo. Feeding habits and ontogenetic diet shift of hairtail fish (Trichiurus lepturus) in East China Sea and Yellow Sea[J]. Marine Fisheries Research, 2004, 25(2): 6−12. [16] 徐开达, 金海卫, 卢占晖, 等. 东海区短鳄齿鱼摄食生态的初步研究[J]. 海洋科学, 2012, 36(7): 79−88.Xu Kaida, Jin Haiwei, Lu Zhanhui, et al. Preliminary study on feeding ecology of Champsodon snyderi in East China Sea region[J]. Marine Sciences, 2012, 36(7): 79−88. [17] 杨纪明, 谭雪静. 渤海3种头足类食性分析[J]. 海洋科学, 2000, 24(4): 53−55. doi: 10.3969/j.issn.1000-3096.2000.04.017Yang Jiming, Tan Xuejing. Food analysis of three cephalopod species in the Bohai Sea[J]. Marine Sciences, 2000, 24(4): 53−55. doi: 10.3969/j.issn.1000-3096.2000.04.017 [18] 杨纪明. 渤海涟虫类和软体动物幼虫食性的观察[J]. 海洋科学, 1998, 22(6): 36−38.Yang Jiming. Observations on food of cumaceans and post larvae of mollusks in the Bohai Sea[J]. Marine Sciences, 1998, 22(6): 36−38. [19] 杨德渐, 孙世春. 海洋无脊椎动物学[M]. 青岛: 中国海洋大学出版社, 1999: 294-308.Yang Dejian, Sun Shichun. Marine Invertebrate Zoology[M]. Qingdao: China Ocean University Press, 1999: 294−308. [20] 邓景耀, 赵传颍. 海洋渔业生物学[M]. 北京: 中国农业出版社, 1991: 630.Deng Jingyao, Zhao Chuanying. Marine Fisheries Biology[M]. Beijing: China Agriculture Press, 1991: 630. [21] 王凯, 章守宇, 汪振华, 等. 枸杞岛海藻场褐菖鲉的摄食习性[J]. 水产学报, 2010, 34(2): 227−235. doi: 10.3724/SP.J.1231.2010.06465Wang Kai, Zhang Shouyu, Wang Zhenhua, et al. Feeding habit of Sebastisous marmoratus in seaweed bed around Gouqi Island[J]. Journal of Fisheries of China, 2010, 34(2): 227−235. doi: 10.3724/SP.J.1231.2010.06465 [22] 杨纪明. 渤海无脊椎动物的食性和营养级研究[J]. 现代渔业信息, 2001, 16(9): 8−16.Yang Jiming. A study on food and trophic levels of Bohai Sea invertebrates[J]. Modern Fisheries Information, 2001, 16(9): 8−16. [23] 赵文. 水生生物学[M]. 北京: 中国农业出版社, 2005: 405-422.Zhao Wen. Aquatic Biology[M]. Beijing: China Agriculture Press, 2005: 405-422. [24] 蒋日进, 徐汉祥, 金海卫, 等. 东海蓝圆鲹的摄食习性[J]. 水产学报, 2012, 36(2): 216−227.Jiang Rijin, Xu Hanxiang, Jin Haiwei, et al. Feeding habits of blue mackerel scad Decapterus maruadsi Temminck et Schlegel in the East China Sea[J]. Journal of Fisheries of China, 2012, 36(2): 216−227. [25] 韩东燕, 薛莹, 纪毓鹏, 等. 胶州湾5种虾虎鱼类的营养和空间生态位[J]. 中国水产科学, 2012, 36(2): 216−227.Han Dongyan, Xue Ying, Ji Yupeng, et al. Trophic and spatial niche of five gobiid fishes in Jiaozhou Bay[J]. Journal of Fishery Sciences of China, 2012, 36(2): 216−227. [26] 戴萍. 台湾海峡鲐鱼食性的初步研究[J]. 海洋湖沼通报, 1989(2): 50−55.Dai Ping. Preliminary study on the food of Pneumatophorus japonicus in Taiwan Channel[J]. Transactions of Oceanology and Limnology, 1989(2): 50−55. [27] 陈飞. 繸鳚(Azuma emmnion)生物学特性的研究[D]. 大连: 大连海洋大学, 2017.Chen Fei. Study on the biological characteristics of Azuma emmnion[D]. Dalian: Dalian Ocean University, 2017. [28] Marina T I, Salinas V, Cordone G, et al. The food web of Potter Cove (Antarctica): complexity, structure and function[J]. Estuarine, Coastal and Shelf Science, 2018, 200: 141−151. doi: 10.1016/j.ecss.2017.10.015 [29] Briand F. Structural singularities of freshwater food webs[J]. Verh. Internat. Verein. Limnol., 1985, 22: 3356−3364. [30] Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[J]. Nature, 1998, 393(6684): 440−442. doi: 10.1038/30918 [31] Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47−97. doi: 10.1103/RevModPhys.74.47 [32] Montoya J M, Solé R V. Small world patterns in food webs[J]. Journal of Theoretical Biology, 2002, 214(3): 405−12. doi: 10.1006/jtbi.2001.2460 [33] Montoya J M, Solé R V. Topological properties of food webs: from real data to community assembly models[J]. Oikos, 2003, 102(3): 614−622. doi: 10.1034/j.1600-0706.2003.12031.x [34] Opitz S. Trophic Interactions in Caribbean Coral Reefs[M]. Makati: International Center for Living Aquatic Resources, 1996. [35] De Santana C N, Rozenfeld A F, Marquet P A, et al. Topological properties of polar food webs[J]. Marine Ecology Progress Series, 2013, 474: 15−26. doi: 10.3354/meps10073 [36] Bodini A, Bellingeri M, Allesina S, et al. Using food web dominator trees to catch secondary extinctions in action[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1524): 1725−1731. doi: 10.1098/rstb.2008.0278 [37] Yodzis P. Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem[J]. Journal of Animal Ecology, 1998, 67(4): 635−658. doi: 10.1046/j.1365-2656.1998.00224.x [38] Link J. Does food web theory work for marine ecosystems?[J]. Marine Ecology Progress, 2002, 230: 1−9. doi: 10.3354/meps230001 [39] Polis G A. Complex trophic interactions in deserts: an empirical critique of food-web theory[J]. The American Naturalist, 1991, 138(1): 123−155. doi: 10.1086/285208 [40] Closs G P, Lake P S. Spatial and temporal variation in the structure of an intermittent-stream food web[J]. Ecological Monographs, 1994, 64(1): 1−21. doi: 10.2307/2937053 [41] Martinez N D. Artifacts or attributes? Effects of resolution on the little rock lake food web[J]. Ecological Monographs, 1991, 61(4): 367−392. doi: 10.2307/2937047 [42] Dunne J A, Williams R J, Martinez N D. Food-web structure and network theory: the role of connectance and size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12917−12922. doi: 10.1073/pnas.192407699 [43] Martinez N D, Hawkins B A, Dawah H A, et al. Effects of sampling effort on characterization of food-web structure[J]. Ecology, 1999, 80(3): 1044−1055. doi: 10.1890/0012-9658(1999)080[1044:EOSEOC]2.0.CO;2 [44] Johnson S, Domínguez-García V, Donetti L, et al. Trophic coherence determines food-web stability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17923−17928. doi: 10.1073/pnas.1409077111 [45] Norkko A, Thrush S F, Cummings V J, et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply[J]. Ecology, 2007, 88(11): 2810−2820. doi: 10.1890/06-1396.1