留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应

李洪娟 陈刚 郭志雄 王维政 黄建盛 曾泽乾

李洪娟,陈刚,郭志雄,等. 军曹鱼( Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J]. 海洋学报,2020,42(4):12–19,doi:10.3969/j.issn.0253−4193.2020.04.002
引用本文: 李洪娟,陈刚,郭志雄,等. 军曹鱼( Rachycentron canadum )幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J]. 海洋学报,2020,42(4):12–19,doi:10.3969/j.issn.0253−4193.2020.04.002
Li Hongjuan,Chen Gang,Guo Zhixiong, et al. Oxidative stress and energy utilization responses of juvenile cobia ( Rachycentron canadum) to environmental hypoxia stress[J]. Haiyang Xuebao,2020, 42(4):12–19,doi:10.3969/j.issn.0253−4193.2020.04.002
Citation: Li Hongjuan,Chen Gang,Guo Zhixiong, et al. Oxidative stress and energy utilization responses of juvenile cobia ( Rachycentron canadum ) to environmental hypoxia stress[J]. Haiyang Xuebao,2020, 42(4):12–19,doi:10.3969/j.issn.0253−4193.2020.04.002

军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应

doi: 10.3969/j.issn.0253-4193.2020.04.002
基金项目: 现代农业产业技术体系专项资金资助(CARS-47);广东海洋大学大学生创新创业训练计划项目(CXXL2018131);南方海洋科学与工程广东省实验室(湛江)(ZJW-2019-06);2018年广东海洋大学起航计划项目(QHJHZR201818)。
详细信息
    作者简介:

    李洪娟(1993-),女,河南省商丘市人,主要研究方向为海水鱼类养殖生理生态学。E-mail:1316437678@qq.com

    通讯作者:

    陈刚,教授,博士生导师,主要从事海水鱼养殖生理生态学方向的研究。E-mail:cheng@gdou.edu.cn

    黄建盛,副教授,主要从事海水鱼养殖生理生态学方向的研究。E-mail:huangjs@gdou.edu.cn

  • 中图分类号: P714+.5; S917.4

Oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress

  • 摘要: 本文探究环境低氧对军曹鱼(Rachycentron canadum)氧化应激和能量利用指标的影响,为军曹鱼的健康养殖提供参考依据。通过设置低氧胁迫–恢复实验,将军曹鱼幼鱼(平均体质量(220.67±20.73)g)在低氧((2.64±0.25)mg/L)胁迫3 h及复氧((6.34±0.15)mg/L)8 h、24 h和48 h后,测定其肝脏和肌肉组织的氧化应激与能量利用指标。结果显示,低氧胁迫后,肝脏中丙二醛(Malondialdehyde,MDA)、过氧化氢酶(Catalase,CAT)和谷胱甘肽还原酶(Glutathione Reductase,GR)活力均显著低于对照组(p<0.05),乳酸脱氢酶(Lactate Dehydrogenase,LDH)活性显著高于对照组(p <0.05);肌肉中MDA和脂质过氧化物(Lipid Peroxidase,LPO)活性均显著低于对照组(p<0.05),超氧化物歧化酶(Superoxide Dismutase,SOD)和LDH活性均显著高于对照组(p<0.05);肌糖原和肝糖原含量极显著低于对照组(p<0.01)。复氧过程中,肝脏和肌肉中MDA、LPO、SOD、CAT、谷胱甘肽过氧化物酶(Glutathione Peroxidase,GPx)和GR含量均出现不同程度的升高;肝糖原在复氧24 h后显著高于对照组(p<0.05),复氧48 h后显著低于对照组(p<0.05);肌糖原在复氧8 h、24 h和48 h后均显著低于对照组(p<0.05)。研究表明,低氧胁迫能够对军曹鱼幼鱼机体造成一定的氧化损伤,肝脏和肌肉组织的酶活力和能量供应发生变化;低氧胁迫后的再复氧环境,对机体造成更为强烈的氧化损伤,可通过自身生理调节逐渐恢复到正常水平。
  • 图  1  低氧胁迫对军曹鱼幼鱼肝脏和肌肉氧化应激指标的影响

    *表示差异显著(p<0.05)

    Fig.  1  Effects of hypoxic stress on oxidative stress indicator of liver and muscle of juvenile cobia

    * shows significant difference (p<0.05)

    图  2  低氧胁迫对军曹鱼幼鱼肝脏和肌肉的乳酸脱氢酶活性、糖原含量的影响

    *表示差异显著(p<0.05),**表示差异极显著(p<0.01)

    Fig.  2  Effects of hypoxia stress on lactate dehydrogenase activity and glycogen content in liver and muscle of juvenile cobia

    * shows significant difference (p<0.05), ** shows extremely significant difference (p<0.01)

    表  1  复氧过程对军曹鱼幼鱼肝脏和肌肉氧化应激指标的影响

    Tab.  1  Effects of reoxygenation on oxidative stress indicator of liver and muscle of juvenile cobia

    氧化应激指标复氧时间/h肝脏肌肉
    丙二醛/nmol·mg−1
    (以蛋白计)
    对照组4.36±0.41a2.31±0.06a
    8 h4.37±0.57a3.49±0.16b
    24 h8.24±0.27c4.95±0.58c
    48 h6.46±0.25b2.52±0.11a
    脂质过氧化物/μmol·g−1
    (以蛋白计)
    对照组0.31±0.01a0.28±0.04a
    8 h1.19±0.27b2.07±0.31c
    24 h1.96±0.65bc1.71±0.18bc
    48 h2.29±0.26c1.40±0.14b
    过氧化氢酶/U·mg−1
    (以蛋白计)
    对照组15.64±1.36a4.38±0.54a
    8 h26.58±4.02b7.83±2.38ab
    24 h38.45±3.65c9.08±2.02b
    48 h27.51±1.25b6.83±3.18ab
    谷胱甘肽过氧化物酶/U·mg−1 (以蛋白计)对照组258.50±27.57a12.21±0.81a
    8 h352.38±16.26b25.99±2.10c
    24 h429.41±23.61c24.23±1.07bc
    48 h424.53±21.03c21.73±1.82b
    超氧化物歧化酶/U·mg−1
    (以蛋白计)
    对照组6.86±1.76a6.44±0.17a
    8 h9.23±1.56ab11.02±1.28b
    24 h11.63±1.58b12.57±1.83b
    48 h9.62±2.27ab12.64±1.44b
    谷胱甘肽还原酶/U·g−1
    (以蛋白计)
    对照组7.96±0.89a5.27±0.98a
    8 h48.91±22.04b38.73±15.49b
    24 h42.96±1.50b40.07±16.66b
    48 h43.42±12.63b22.58±9.64ab
      注:同一列中不同字母上标的数值互相之间差异显著(p<0.05)。
    下载: 导出CSV

    表  2  复氧过程对军曹鱼幼鱼肝脏和肌肉能量利用指标的影响

    Tab.  2  Effects of reoxygenation on energy utilization indicator of liver and muscle of juvenile cobia

    能量利用指标复氧时间/h肝脏肌肉
    乳酸脱氢酶/U·g−1
    (以蛋白计)
    对照组165.37±39.61ab251.12±39.10a
    8 h193.32±2.58b320.55±101.18a
    24 h149.39±18.28ab331.92±38.58a
    48 h140.87±11.27a372.32±67.30a
    糖原/mg·g−1对照组22.57±0.89b2.74±0.03b
    8 h19.82±1.10ab1.82±0.48a
    24 h33.28±1.73c1.90±0.42a
    48 h18.81±1.94a1.55±0.18a
      注:同一列中不同字母上标的数值互相之间差异显著(p<0.05)。
    下载: 导出CSV
  • [1] 张国松. 瓦氏黄颡鱼(Pelteobagrus vachelli)应对低氧胁迫的分子机制研究[D]. 南京: 南京师范大学, 2017.

    Zhang Guosong. Study on the molecular mechanism of Pelteobagrus vachelli in response to hypoxia stress[D]. Nanjing : Nanjing Normal University, 2017.
    [2] Wu R S S. Hypoxia: from molecular responses to ecosystem responses[J]. Marine Pollution Bulletin, 2002, 45(1−12): 35−45.
    [3] Buentello J A, Gatlin Ⅲ D M, Neill W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus)[J]. Aquaculture, 2000, 182(3/4): 339−352.
    [4] 李洁. 限制溶解氧供应对褐牙鲆幼鱼生长的影响及其机制的实验研究[D]. 青岛: 中国海洋大学, 2011.

    Li Jie. Effects of restricted the supply of dissolved oxygen on the growth of juvenile brown flounder, (Paralichthys olivaceus) and the mechanism[D]. Qingdao: Ocean University of China, 2011.
    [5] Lai Kengpo, Li J W, Tse A C K, et al. Hypoxia alters steroidogenesis in female marine medaka through miRNAs regulation[J]. Aquatic Toxicology, 2016, 172: 1−8. doi: 10.1016/j.aquatox.2015.12.012
    [6] 穆景利, 靳非, 赵化德, 等. 水体低氧的早期暴露对青鳉(Oryzias latipes)后期的生长、性别比和繁殖能力的影响[J]. 生态毒理学报, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002

    Mu Jingli, Jin Fei, Zhao Huade, et al. Early-life exposure to hypoxia altered growth, sex ratio, and reproduction in medaka (Oryzias latipes)[J]. Asian Journal of Ecotoxicology, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002
    [7] Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275−281. doi: 10.2134/jeq2001.302275x
    [8] Dybas C L. Dead zones spreading in world oceans[J]. BioScience, 2005, 55(7): 552−557. doi: 10.1641/0006-3568(2005)055[0552:DZSIWO]2.0.CO;2
    [9] 常志成, 温海深, 张美昭, 等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报, 2018, 48(7): 20−28.

    Chang Zhicheng, Wen Haishen, Zhang Meizhao, et al. Effects of dissolved oxygen levels on oxidative stress response and energy utilization of juvenile Chinese sea bass (Lateolabrax maculatus) and associate physiological mechanisms[J]. Periodical of Ocean University of China, 2018, 48(7): 20−28.
    [10] 王永红, 张建设, 曾霖. β-葡聚糖对低氧胁迫下大黄鱼幼鱼的保护作用及其机理[J]. 水产学报, 2018, 42(6): 828−837.

    Wang Yonghong, Zhang Jianshe, Zeng Lin. β-glucan decreases intensity of hypoxia-induced oxidative stress in large yellow croaker (Larimichthys crocea) and its corresponding mechanisms[J]. Journal of Fisheries of China, 2018, 42(6): 828−837.
    [11] 张晓梅, 王春琳, 李来国, 等. 耗氧率及溶氧胁迫对长蛸体内酶活力的影响[J]. 水生态学杂志, 2010, 3(2): 72−79.

    Zhang Xiaomei, Wang Chunlin, Li Laiguo, et al. Oxygen consumption rate and effect of hypoxia stress on enzyme activity of Octopus variabilis[J]. Journal of Hydroecology, 2010, 3(2): 72−79.
    [12] 陈刚, 张健东, 吴灶和. 军曹鱼幼鱼耗氧率与窒息点的研究[J]. 水产养殖, 2005, 26(1): 1−4. doi: 10.3969/j.issn.1004-2091.2005.01.001

    Chen Gang, Zhang Jiandong, Wu Zaohe. Study on the oxygen consumption rate and the asphyxianted point of Rachycentron canadum[J]. Journal of Aquaculture, 2005, 26(1): 1−4. doi: 10.3969/j.issn.1004-2091.2005.01.001
    [13] 陈强, 刘泓宇, 谭北平, 等. 饲料胆固醇对军曹鱼幼鱼生长、血液生化指标及脂代谢的影响[J]. 广东海洋大学学报, 2016, 36(1): 35−43. doi: 10.3969/j.issn.1673-9159.2016.01.007

    Chen Qiang, Liu Hongyu, Tan Beiping, et al. Effects of dietary cholesterol level on growth performance, blood biochemical parameters and lipid metabolism of juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2016, 36(1): 35−43. doi: 10.3969/j.issn.1673-9159.2016.01.007
    [14] 熊向英, 黄国强, 彭银辉, 等. 低氧胁迫对鲻幼鱼生长、能量代谢和氧化应激的影响[J]. 水产学报, 2016, 40(1): 73−82.

    Xiong Xiangying, Huang Guoqiang, Peng Yinhui, et al. Effect of hypoxia on growth performance, energy metabolism and oxidative stress of Mugil cephalus[J]. Journal of Fisheries of China, 2016, 40(1): 73−82.
    [15] 王健伟. 低氧对鳊鱼幼鱼临界游泳和匀加速游泳能力的影响及其生化机制[D]. 重庆: 重庆师范大学, 2015.

    Wang Jianwei. The effects of hypoxia on critical swimming and constant accelerate swimming performance and biochemical mechanism in juvenile Parabramis pekinensis[D]. Chongqing: Chongqing Normal University, 2015.
    [16] 黄建盛, 陆枝, 陈刚, 等. 急性低氧胁迫对军曹鱼大规格幼鱼血液生化指标的影响[J]. 海洋学报, 2019, 41(6): 76−84.

    Huang Jiansheng, Lu Zhi, Chen Gang, et al. Acute hypoxia stress on blood biochemical indexes of large-sized juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2019, 41(6): 76−84.
    [17] Lushchak V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquatic Toxicology, 2011, 101(1): 13−30. doi: 10.1016/j.aquatox.2010.10.006
    [18] Victor V M, Esplugues J V, Hernandez-Mijares A, et al. Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants[J]. Infectious Disorders - Drug Targets, 2009, 9(4): 376−389. doi: 10.2174/187152609788922519
    [19] Ortuño J, Esteban M A, Meseguer J. Lack of effect of combining different stressors on innate immune responses of seabream (Sparus aurata L.)[J]. Veterinary Immunology and Immunopathology, 2002, 84(1/2): 17−27.
    [20] Lushchak V I, Bagnyukova T V, Lushchak O V, et al. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues[J]. The International Journal of Biochemistry & Cell Biology, 2005, 37(6): 1319−1330.
    [21] Sampaio F G, de Lima Boijink C, Oba E T, et al. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2008, 147(1): 43−51.
    [22] Lushchak V I, Bagnyukova T V. Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2007, 148(4): 390−397. doi: 10.1016/j.cbpb.2007.07.007
    [23] 张志伟. 鲢低氧应激相关基因的克隆与表达分析[D]. 武汉: 华中农业大学, 2011.

    Zhang Zhiwei. Molecular cloning and differential expression patterns of hypoxic stress related genes in silver carp[D]. Wuhan: Huazhong Agricultural University, 2011.
    [24] 何伟, 曹振东, 付世建. 温度和低氧对白鲢乳酸与糖水平的影响[J]. 重庆师范大学学报:自然科学版, 2013, 30(5): 27−31.

    He Wei, Cao Zhendong, Fu Shijian. Effects of temperature and hypoxia on lactate and carbohydrate level in silver carp (Hypophthalmichthys molitrix)[J]. Journal of Chongqing Normal University: Natural Science, 2013, 30(5): 27−31.
    [25] 揭小华, 彭雄, 黄波, 等. 乳酸脱氢酶编码基因在肿瘤中表达及其转录调控机制的研究进展[J]. 肿瘤, 2015, 35(11): 1271−1277.

    Jie Xiaohua, Peng Xiong, Huang Bo, et al. Progress in research on expression and transcriptional regulation of lactate dehydrogenase coding genes in cancer[J]. Tumor, 2015, 35(11): 1271−1277.
    [26] Vagner M, Lefrançois C, Ferrari R S, et al. The effect of acute hypoxia on swimming stamina at optimal swimming speed in flathead grey mullet Mugil cephalus[J]. Marine Biology, 2008, 155(2): 183−190. doi: 10.1007/s00227-008-1016-x
    [27] 区又君, 陈世喜, 王鹏飞, 等. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学, 2017, 13(3): 120−124. doi: 10.3969/j.issn.2095-0780.2017.03.016

    Ou Youjun, Chen Shixi, Wang Pengfei, et al. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hypoxia stress[J]. South China Fisheries Science, 2017, 13(3): 120−124. doi: 10.3969/j.issn.2095-0780.2017.03.016
    [28] Chew S F, Ip Y K. Biochemical adaptations of the mudskipper Boleophthalmus boddaerti to a lack of oxygen[J]. Marine Biology, 1992, 112(4): 567−571. doi: 10.1007/BF00346174
    [29] 彭银辉, 黄国强, 李洁, 等. 溶氧水平对梭鱼幼鱼能量代谢与氧化应激的影响[J]. 广西科学, 2013, 20(4): 294−298.

    Peng Yinhui, Huang Guoqiang, Li Jie, et al. Energy metabolism and oxidative stress of juvenile Liza haematocheila as dissolved oxygen decline[J]. Guangxi Sciences, 2013, 20(4): 294−298.
    [30] Sharpe R L, Milligan C L. Lactate efflux from sarcolemmal vesicles isolated from rainbow trout Oncorhynchus mykiss white muscle is via simple diffusion[J]. Journal of Experimental Biology, 2003, 206(3): 543−549. doi: 10.1242/jeb.00126
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  82
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-10-17
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回