留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄、东海春季海水胞外酶活性水平分布特征研究

张正雨 田继远 于娟 杨桂朋 崔煜 陈得萍 高萍 许瑞 陈容

张正雨,田继远,于娟,等. 黄、东海春季海水胞外酶活性水平分布特征研究[J]. 海洋学报,2020,42(4):1–11,doi:10.3969/j.issn.0253−4193.2020.04.001
引用本文: 张正雨,田继远,于娟,等. 黄、东海春季海水胞外酶活性水平分布特征研究[J]. 海洋学报,2020,42(4):1–11,doi:10.3969/j.issn. 0253−4193.2020.04.001
Zhang Zhengyu,Tian Jiyuan,Yu Juan, et al. Horizontal distribution of extracellular enzyme activities in the Yellow Sea and the East China Sea in spring[J]. Haiyang Xuebao,2020, 42(4):1–11,doi:10.3969/j.issn.0253−4193.2020.04.001
Citation: Zhang Zhengyu,Tian Jiyuan,Yu Juan, et al. Horizontal distribution of extracellular enzyme activities in the Yellow Sea and the East China Sea in spring[J]. Haiyang Xuebao,2020, 42(4):1–11,doi:10.3969/j.issn.0253−4193.2020.04.001

黄、东海春季海水胞外酶活性水平分布特征研究

doi: 10.3969/j.issn.0253-4193.2020.04.001
基金项目: 国家重点研发计划(2016YFA0601302);青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室渔业科技青年人才计划(2018-MFS-T16);国家自然科学基金(41876122,41776085);青岛海洋科学与技术试点国家实验室“鳌山人才”计划(2015ASTP);国家自然科学基金创新研究群体项目(41521064)。
详细信息
    作者简介:

    张正雨(1995-),女,山东省莱西市人,主要研究方向为海洋有机碳的降解。E-mail:1366738067@qq.com

    通讯作者:

    于娟,女,副教授,主要从事DMS的生物地球化学循环、海洋生态学研究。E-mail:yuetian@ouc.edu.cn

  • 中图分类号: P714+.4

Horizontal distribution of extracellular enzyme activities in the Yellow Sea and the East China Sea in spring

  • 摘要: 海水胞外酶活性可以指示有机物的分布特征以及微生物的营养状况。我们测定了2017年3月25日至4月15日黄海和东海44个大面站以及2018年4月28日至29日胶州湾湾口附近海域10个站位表层海水中的8种胞外酶活性并研究了其分布特征。2017年春季黄、东海表层海水中碱性磷酸酶和脂肪酶活性较高,高值区出现在苏北沿岸和南黄海中部,碱性磷酸酶与磷酸盐浓度之间呈正相关。其余6种酶(肽酶、几丁质酶、纤维素酶、α-D-葡萄糖苷酶、β-D-半乳糖苷酶、木糖苷酶)活性高值区出现在长江口以东的外海,东海的β-D-半乳糖苷酶、木糖苷酶平均酶活性显著高于黄海。8种酶活性平均值排列顺序由大到小为:碱性磷酸酶、脂肪酶、肽酶、几丁质酶、α-D-葡萄糖苷酶、β-D-半乳糖苷酶、纤维素酶、木糖苷酶,其中α-D-葡萄糖苷酶和β-D-半乳糖苷酶的活性基本一致。2018年春季胶州湾附近海域海水中碱性磷酸酶、脂肪酶、木糖苷酶活性分布为近岸高于远岸,几丁质酶活性为近岸低于远岸。8种酶活性平均值排列顺序由大到小为:碱性磷酸酶、脂肪酶、肽酶、木糖苷酶、α-D-葡萄糖苷酶、β-D-半乳糖苷酶、几丁质酶、纤维素酶,其中几丁质酶和纤维素酶的活性基本一致。黄海的碱性磷酸酶和脂肪酶平均酶活性均显著高于东海和胶州湾附近海域。糖类水解酶(几丁质酶、纤维素酶、α-D-葡萄糖苷酶、β-D-半乳糖苷酶、木糖苷酶)平均酶活性在黄海最低。本文的结果对于理解中国近海海水有机碳的分布、浮游植物及异养细菌对有机碳的降解具有重要意义。
  • 图  1  2017年春季黄、东海(a)和2018年春季胶州湾附近海域(b)采样站位

    Fig.  1  Sampling stations in the Yellow Sea and the East China Sea in spring 2017 (a) and in the Jiaozhou Bay nearby waters in spring 2018 (b)

    图  2  2017年春季黄、东海表层海水温度、盐度及8种胞外酶活性水平分布

    Fig.  2  The distributions of temperature, salinity and eight extracellular enzyme activities in the surface waters of the Yellow Sea and the East China Sea during spring 2017

    图  3  2018年春季胶州湾附近海域表层海水温度、盐度及8种胞外酶活性水平分布

    Fig.  3  The distributions of temperature, salinity and eight extracellular enzyme activities in the surface waters of the Jiaozhou Bay nearby waters during spring 2018

    图  4  2017年春季黄、东海和2018年春季胶州湾附近海域8种胞外酶的平均酶活性

    Fig.  4  Average activities of eight extracellular enzymes in the Yellow Sea and the East China Sea in spring 2017 and in Jiaozhou Bay nearby waters in spring 2018

    表  1  2017年春季黄、东海表层海水温度、盐度和胞外酶活性的变化范围及平均值

    Tab.  1  Variation and average of temperatures, salinities and eight extracellular enzyme activities in the Yellow Sea and the East China Sea during spring 2017

    温度/℃盐度酶活性/pmol·L−1·h−1
    APLIPAMPCHIAGLUBGALCELXYL
    变化范围6.91~24.4725.81~34.941 313~38 530424~23 473850~3 35529~5479~5582~29010~45614~185
    平均值14.0032.595 891±8 1864 760±5 2682 241±729235±131155±184155±97136±11371±50
      注:±表示标准偏差。
    下载: 导出CSV

    表  2  2018年春季胶州湾附近海域表层海水温度、盐度和胞外酶活性的变化范围及平均值

    Tab.  2  Variation and average of temperatures, salinities and eight extracellular enzyme activities in the Jiaozhou Bay nearby waters during spring 2018

    温度/℃盐度酶活性/pmol·L−1·h−1
    APLIPAMPXYLAGLUBGALCHICEL
    变化范围9.41~11.2931.92~32.330~4 621473~4 442792~2 05014~1 14218~34612~4230~3660~386
    平均值10.5532.151 865±1 3321 821±1 1241 499±417397±304186±112133±116109±126106±156
      注:±表示标准偏差。
    下载: 导出CSV

    表  3  2017年春季黄、东海和2018年春季胶州湾附近海域8种胞外酶活性之间的相关性分析

    Tab.  3  Correlation analysis between eight extracellular enzyme activities of the Yellow Sea and the East China Sea during spring 2017 and the Jiaozhou Bay nearby waters during spring 2018

    APLIPAMPCHIAGLUBGALCELXYL
    黄、东海AP1
    LIP0.883**1
    AMP−0.110−0.1151
    CHI−0.191−0.0450.0011
    AGLU0.2920.1990.1650.1651
    BGAL−0.280−0.2500.1120.606**0.1951
    CEL0.314*0.1900.1520.1570.862**0.1801
    XYL−0.161−0.0180.2360.2890.0240.270−0.0331
    胶州湾附近海域AP1
    LIP0.3691
    AMP−0.4410.3131
    CHI−0.306−0.418−0.2071
    AGLU−0.6060.0930.5460.3221
    BGAL−0.122−0.3960.0430.4610.2711
    CEL0.1160.6110.394−0.5280.049−0.3441
    XYL0.817**0.314−0.208−0.429−0.5240.0280.2411
      注:**表示p<0.01;*表示p<0.05。
    下载: 导出CSV

    表  4  温度、盐度及Chl a与8种胞外酶活性的相关性分析

    Tab.  4  Relationship between temperature, salinity, Chl a and eight extracellular enzyme activities

    胞外酶黄、东海胶州湾附近海域
    温度盐度Chl a温度盐度
    AP−0.283−0.069−0.1650.511−0.488
    LIP−0.360*−0.214−0.1350.146−0.851**
    AMP−0.2040.1030.032−0.561−0.042
    CHI0.326*−0.193−0.0180.0630.500
    AGLU0.1360.070−0.038−0.203−0.014
    BGAL0.412**0.011−0.033−0.3150.376
    CEL0.1590.072−0.012−0.476−0.598
    XYL−0.291−0.1060.0820.180−0.477
      注: **表示p<0.01;*表示p<0.05。
    下载: 导出CSV
  • [1] Thurman E M. Organic geochemistry of natural waters[M]//Organic Geochemistry of Natural Waters. Dordrecht: Springer, 1985: 425−440.
    [2] Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea[J]. Marine Ecology Progress Series, 1983, 10(3): 257−263.
    [3] Hagström Å, Azam F, Andersson A, et al. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes[J]. Marine Ecology Progress Series, 1988, 49(1/2): 171−178.
    [4] Chróst R J, Münster U, Rai H, et al. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake[J]. Journal of Plankton Research, 1989, 11(2): 223−242. doi: 10.1093/plankt/11.2.223
    [5] Vetter Y A, Deming J W. Extracellular enzyme activity in the Arctic Northeast Water Polynya[J]. Marine Ecology Progress Series, 1994, 114(1/2): 23−34.
    [6] Chróst R J. Microbial ectoenzymes in aquatic environments[M]//Overbeck J, Chróst R J. Aquatic Microbial Ecology. New York: Springer, 1990: 47-78.
    [7] Garde K, Gustavson K. The impact of UV-B radiation on alkaline phosphatase activity in phosphorus-depleted marine ecosystems[J]. Journal of Experimental Marine Biology and Ecology, 1999, 238(1): 93−105. doi: 10.1016/S0022-0981(99)00005-2
    [8] 洪华生, 戴民汉, 郑效成. 海水中碱性磷酸酶活力的测定及其在磷的循环中的作用初探[J]. 海洋与湖沼, 1992, 23(4): 415−420.

    Hong Huasheng, Dai Minhan, Zheng Xiaocheng. Measurement of alkaline phosphatase activity in sea water substrates and investigation on the role of alkaline phosphatase in the cycling of phosphorus[J]. Oceanologia et Limnologia Sinica, 1992, 23(4): 415−420.
    [9] Duhamel S, Dyhrman S T, Karl D M. Alkaline phosphatase activity and regulation in the North Pacific Subtropical Gyre[J]. Limnology and Oceanography, 2010, 55(3): 1414−1425. doi: 10.4319/lo.2010.55.3.1414
    [10] Biche S U, Das A, Mascarenhas-Pereira M B L, et al. Alkaline phosphatase: an appraisal of its critical role in C-limited deep-sea sediments of central Indian Basin[J]. Geomicrobiology Journal, 2017, 34(3): 274−288. doi: 10.1080/01490451.2016.1190804
    [11] 姜经梅, 赵慧, 沈铭能, 等. 长江口潮滩表层沉积物中碱性磷酸酶活性及其影响因素[J]. 环境科学学报, 2011, 31(10): 2233−2239.

    Jiang Jingmei, Zhao Hui, Shen Mingneng, et al. Distribution and impact factor of alkaline phosphatase activity in the intertidal surface sediments of the Yangtze Estuary[J]. Acta Scientiae Circumstantiae, 2011, 31(10): 2233−2239.
    [12] 周易勇, 李建秋, 陈旭东, 等. 东湖溶解态磷酸酶的活性、动力学特征及其空间分布[J]. 环境科学, 1997, 18(5): 37−40. doi: 10.3321/j.issn:0250-3301.1997.05.010

    Zhou Yiyong, Li Jianqiu, Chen Xudong, et al. Activity, kinetics and spatial variation of dissolved alkaline phosphatase in lake Donghu[J]. Environmental Science, 1997, 18(5): 37−40. doi: 10.3321/j.issn:0250-3301.1997.05.010
    [13] 宋春雷, 曹秀云, 李建秋, 等. 湖泊磷酸酶与微生物活性对内源磷负荷的贡献及其与富营养化的关系[J]. 中国科学(D辑: 地球科学), 2006, 49(S2): 102−113.

    Song Chunlei, Cao Xiuyun, Li Jianqiu, et al. Contributions of phosphatase and microbial activity to internal phosphorus loading and their relation to lake eutrophication[J]. Science in China Series D, 2006, 49(S2): 102−113.
    [14] Ivančić I, Fuks D, Radić T, et al. Phytoplankton and bacterial alkaline phosphatase activity in the northern Adriatic Sea[J]. Marine Environmental Research, 2010, 69(2): 85−94. doi: 10.1016/j.marenvres.2009.08.004
    [15] Duhamel S, Björkman K M, van Wambeke F, et al. Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: implications for phosphorus cycling[J]. Limnology and Oceanography, 2011, 56(4): 1244−1254. doi: 10.4319/lo.2011.56.4.1244
    [16] Hashimoto S, Fujiwara K, Fuwa K. Relationship between alkaline phosphatase activity and orthophosphate in the present Tokyo Bay[J]. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering, 1985, 20(7): 781−809. doi: 10.1080/10934528509375258
    [17] Koike I, Nagata T. High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9/10): 2283−2294.
    [18] 黄邦钦, 洪华生, 薛雄志. 厦门西海域水体中碱性磷酸酶活力分布及其影响因子分析[J]. 海洋学报, 2000, 22(1): 62−68.

    Huang Bangqin, Hong Huasheng, Xue Xiongzhi. Distribution and controlling factors of alkaline phosphatase activity in western Xiamen waters[J]. Haiyang Xuebao, 2000, 22(1): 62−68.
    [19] Arrieta J M, Herndl G J. Changes in bacterial β-glucosidase diversity during a coastal phytoplankton bloom[J]. Limnology and Oceanography, 2002, 47(2): 594−599. doi: 10.4319/lo.2002.47.2.0594
    [20] Brown S E, Goulder R. Extracellular-enzyme activity in trout-farm effluents and a recipient river[J]. Aquaculture Research, 1996, 27(12): 895−901. doi: 10.1111/j.1365-2109.1996.tb01249.x
    [21] Caruso G. Leucine aminopeptidase, β-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal mediterranean sites[J]. Marine Drugs, 2010, 8(4): 916−940. doi: 10.3390/md8040916
    [22] 郑天凌, 王斐, 徐美珠, 等. 台湾海峡水域的β-葡萄糖苷酶活性[J]. 应用与环境生物学报, 2001, 7(2): 175−182. doi: 10.3321/j.issn:1006-687X.2001.02.017

    Zheng Tianling, Wang Fei, Xu Meizhu, et al. β-glucosidase activity in the Taiwan Strait[J]. Chinese Journal of Applied and Environmental Biology, 2001, 7(2): 175−182. doi: 10.3321/j.issn:1006-687X.2001.02.017
    [23] 宋福行. 胶州湾海水中胞外酶活性的动态变化及其调控因素的初步研究[D]. 青岛: 中国科学院海洋研究所, 2001.

    Song Fuxing. Preliminary study on the extracellular enzymatic activity and the affecting factors in the Jiaozhou Bay[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2001.
    [24] 赵丽军, 田继远, 于娟, 等. 2013年秋末黄渤海海水中胞外酶活性水平和垂直变化[J]. 中国环境科学, 2015, 35(7): 2171−2181. doi: 10.3969/j.issn.1000-6923.2015.07.043

    Zhao Lijun, Tian Jiyuan, Yu Juan, et al. Horizontal and vertical variations of activities of extracellular enzymes in the seawater of the Yellow Sea and the Bohai Sea in late autumn, 2013[J]. China Environmental Science, 2015, 35(7): 2171−2181. doi: 10.3969/j.issn.1000-6923.2015.07.043
    [25] Hoppe H G. Use of fluorogenic model substrates for Extracellular Enzyme Activity (EEA) measurement of bacteria[M]//Kemp P F, Sherr B F, Sherr E B, et al. Current Methods in Aquatic Microbial Ecology. Boca Raton: CRC Press, 1993: 423−431.
    [26] Hoppe H G. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates[J]. Marine Ecology Progress Series, 1983, 11: 299−308. doi: 10.3354/meps011299
    [27] Parsons T R, Maita Y, Lalli C M. A Manual of Chemical and Biological Methods for Seawater Analysis[M]. Oxford: Pergamon Press, 1984: 23−58.
    [28] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. Weinheim: Wiley-VCH, 1999: 159−228.
    [29] Holmes R M, Aminot A, Kérouel R, et al. A simple and precise method for measuring ammonium in marine and freshwater ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(10): 1801−1808. doi: 10.1139/f99-128
    [30] 周易勇, 付永清. 水体磷酸酶: 来源、特征及其生态学意义[J]. 湖泊科学, 1999, 11(3): 274−282. doi: 10.18307/1999.0313

    Zhou Yiyong, Fu Yongqing. Phosphatases in natural water: origin, characteristics and ecological significance[J]. Journal of Lake Sciences, 1999, 11(3): 274−282. doi: 10.18307/1999.0313
    [31] Huang Bangqin, Huang Shiyu, Weng Yan, et al. Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae[J]. Acta Oceanologica Sinica, 2000, 19(2): 29−35.
    [32] Perry M J. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method[J]. Marine Biology, 1972, 15(2): 113−119. doi: 10.1007/BF00353639
    [33] Taga N, Kobori H. Phosphatase activity in Eutrophic Tokyo Bay[J]. Marine Biology, 1978, 49(3): 223−228. doi: 10.1007/BF00391134
    [34] Jones J G. Studies on freshwater bacteria: association with algae and alkaline phosphatase activity[J]. Journal of Ecology, 1972, 60(1): 59−75. doi: 10.2307/2258040
    [35] Jones J G. Studies on freshwater micro-organisms: phosphatase activity in lakes of differing degrees of eutrophication[J]. Journal of Ecology, 1972, 60(3): 777−791. doi: 10.2307/2258564
    [36] 王保栋, 王桂云, 郑昌洙, 等. 南黄海营养盐的平面分布及横向输运[J]. 海洋学报, 1999, 21(6): 124−129.

    Wang Baodong, Wang Guiyun, Zheng Changzhu, et al. Horizontal distributions and transportation of nutrients in the southern Huanghai Sea[J]. Haiyang Xuebao, 1999, 21(6): 124−129.
    [37] Li Hongmei, Zhang Chuansong, Han Xiurong, et al. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980−2012: sources and seaward gradients[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 44−55.
    [38] Chróst R J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes[M]//Chróst R J. Microbial Enzymes in Aquatic Environments. New York: Springer, 1991: 29−59.
    [39] Kalwasińska A, Brzezinska M S. Extracellular enzymatic activities in subsurface water of eutrophic Lake Chełmżyńskie, Poland[J]. Journal of Freshwater Ecology, 2013, 28(4): 517−527. doi: 10.1080/02705060.2013.793220
    [40] 谷体华, 王丹, 林丽贞, 等. 台湾海峡南部上升流区亮氨酸氨肽酶活性的初步研究[J]. 海洋科学, 2008, 32(12): 42−46.

    Gu Tihua, Wang Dan, Lin Lizhen, et al. Preliminary study on Leucine aminopeptidase activity in the upwelling region of the Southern Taiwan Straits[J]. Marine Sciences, 2008, 32(12): 42−46.
    [41] Williams C J, Jochem F J. Ectoenzyme kinetics in Florida Bay: implications for bacterial carbon source and nutrient status[J]. Hydrobiologia, 2006, 569: 113−127. doi: 10.1007/s10750-006-0126-z
    [42] Mudryk Z J, Skórczewski P. Extracellular enzyme activity at the air-water interface of an estuarine lake[J]. Estuarine, Coastal and Shelf Science, 2004, 59(1): 59−67. doi: 10.1016/j.ecss.2003.08.001
    [43] Chróst R J. Characterization and significance of β-glucosidase activity in lake water[J]. Limnology and Oceanography, 1989, 34(4): 660−672. doi: 10.4319/lo.1989.34.4.0660
    [44] Rulík M, Spáčil R. Extracellular enzyme activity within hyporheic sediments of a small lowland stream[J]. Soil Biology and Biochemistry, 2004, 36(10): 1653−1662. doi: 10.1016/j.soilbio.2004.07.005
    [45] 胡春, 陈岩, 杨桂朋, 等. 2017年春季黄东海碳水化合物的分布特征[J]. 海洋环境科学, 2019, 38(6): 848−855. doi: 10.12111/j.mes20190605

    Hu Chun, Chen Yan, Yang Guipeng, et al. Study on the distribution of dissolved carbohydrates in the South Yellow Sea and the East China Sea during spring[J]. Marine Environmental Science, 2019, 38(6): 848−855. doi: 10.12111/j.mes20190605
    [46] Tholosan O, Lamy F, Garcin J, et al. Biphasic extracellular proteolytic enzyme activity in benthic water and sediment in the northwestern Mediterranean Sea[J]. Applied and Environmental Microbiology, 1999, 65(4): 1619−1626. doi: 10.1128/AEM.65.4.1619-1626.1999
    [47] Unanue M, Ayo B, Agis M, et al. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model[J]. Microbial Ecology, 1999, 37(1): 36−48. doi: 10.1007/s002489900128
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  35
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2019-09-16
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回