留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载GNSS反射信号海面测高模型的研究

张云 张杨阳 孟婉婷 杨树瑚 韩彦岭

张云,张杨阳,孟婉婷,等. 机载GNSS反射信号海面测高模型的研究[J]. 海洋学报,2020,42(3):149–156,doi:10.3969/j.issn.0253−4193.2020.03.015
引用本文: 张云,张杨阳,孟婉婷,等. 机载GNSS反射信号海面测高模型的研究[J]. 海洋学报,2020,42(3):149–156,doi:10.3969/j.issn.0253−4193. 2020.03.015
Zhang Yun,Zhang Yangyang,Meng Wanting, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Haiyang Xuebao,2020, 42(3):149–156,doi:10.3969/j.issn.0253−4193.2020.03.015
Citation: Zhang Yun,Zhang Yangyang,Meng Wanting, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Haiyang Xuebao,2020, 42(3):149–156,doi:10.3969/j.issn.0253−4193.2020.03.015

机载GNSS反射信号海面测高模型的研究

doi: 10.3969/j.issn.0253-4193.2020.03.015
基金项目: 国家自然科学基金(41376178,41401489);上海市大学青年教师基金(ZZHY13033)。
详细信息
    作者简介:

    张云(1974—)男,上海市人,教授,主要从事卫星导航定位和GNSS-R技术研究。E-mail:y-zhang@shou.edu.cn

  • 中图分类号: P228.3

Research on sea surface altimetry model of airborne GNSS reflected signal

  • 摘要: 相对于岸基GNSS-R技术,机载GNSS-R优势在于其空间分辨率高、监测范围广,可对特定区域范围进行高分辨率监测,兼具了灵活的高度和方位调节的同时保障了更高的数据质量。本文主要研究了机载GNSS-R测高模型,依据岸基GNSS-R码测高原理,针对大气延迟、天线距离等进行修正,优化机载测高模型,同时采用DTU10全球海面平均高度及潮汐模型验证机载GNSS-R测高模型的精度。通过分析2011年11月11日,CSIC-IEEC在芬兰波罗的海的GNSS-R机载数据,针对不同仰角下的实验数据进行反演,成功地实现了亚米级机载海面高度反演,得出仰角大小会对测高结果精度产生较大影响的结论,定性分析了仰角大小所引起的误差范围。本文的结果证明了机载GNSS-R的海面测高的可行性。
  • 图  1  GNSS-R码测高技术基本概念

    Fig.  1  GNSS-R group delay altimetry basic concept

    图  2  机载测高模型

    Fig.  2  Airborne altimetry model

    图  3  飞行轨迹图

    a. 第一个实验期间飞行轨迹;b. 第二个实验期间飞行轨迹

    Fig.  3  Flight trajectory

    a is the flight trajectory during the first experiment; b is the flight trajectory during the second experiment

    图  4  PRN12号卫星(红)及PRN25号卫星(蓝)仰角变化

    a. 第一个实验期间仰角变化;b. 第二个实验期间仰角变化

    Fig.  4  Variation of PRN12 satellite (red) and PRN25 satellite (blue) elevation angle

    a is the elevation angle change during the first experiment; b is the elevation angle change during the second experiment

    图  5  PRN12(红色)和PRN25(蓝色)卫星镜面反射点轨迹

    a. 第一个实验期间镜面反射点轨迹;b. 第二个实验期间镜面反射点轨迹

    Fig.  5  PRN12 (red) and PRN25 (blue) satallite specular reflection point trace

    a is the specular reflection point trajectory during the first experiment; b is the specular reflection point trajectory during the second experiment

    图  6  第一个数据时间段1 s高度对比

    a. 高仰角情况下高度对比;b. 低仰角情况下高度对比

    Fig.  6  The first data period 1 s height comparison

    a is height comparison for high elevation angles; b is height comparison for low elevation angles

    图  7  第一个数据时间段20 s平均后高度对比

    a. 高仰角情况下高度对比;b. 低仰角情况下高度对比

    Fig.  7  The first data period after 20 s average height comparison

    a is height comparison for high elevation angles; b is height comparison for low elevation angles

    图  8  反演高度异常值(a)及筛选过后高度值(b)

    Fig.  8  Inversion of height anomaly values(a)and filtered height values(b)

    图  9  直射信号正常功率波形(a)及异常功率波形(b)

    Fig.  9  Direct signal normal(a)and abnormal power waveform(b)

    图  10  第二个数据时间段1 s高度对比

    a. 高仰角情况下高度对比;b.低仰角情况下高度对比

    Fig.  10  The second data period 1 s height comparison

    a is height comparison for high elevation angles; b is height comparison for low elevation angles

    图  11  第二个数据时间段20 s平均后高度对比

    a.高仰角情况下高度对比;b.低仰角情况下高度对比

    Fig.  11  The second data period after 20 s average height comparison

    a is height comparison for high elevation angles; b is height comparison for low elevation angles

    表  1  实验数据结果

    Tab.  1  Result of experimental data

    数据GPS时间仰角卫星号低/高仰角
    第一个数据时间段452 008~453 350 s80.51°~84.29°12
    46.60°~56.78°25
    第二个数据时间段456 700~458 099 s76.82°~79.93°25
    47.30°~58.30°12
    下载: 导出CSV

    表  2  实验数据结果

    Tab.  2  Result of experimental data

    实验数据卫星号仰角评估标准1 s10 s15 s20 s
    第一个数据时间段12Bias/m0.0090.012−0.006−0.007
    MAE/m0.8900.4920.4620.447
    STD/m0.6900.3950.3470.329
    25Bias/m2.6002.5952.5812.578
    MAE/m3.9342.9222.8792.811
    STD/m3.7812.0781.8661.789
    第二个数据时间段25Bias/m0.7980.7920.7890.792
    MAE/m1.2111.0020.9810.972
    STD/m0.8740.7270.7210.718
    12Bias/m−2.362−2.544−2.543−2.533
    MAE/m5.9003.5233.2263.179
    STD/m5.0563.3412.9512.818
      注:Bias表示偏差,MAE表示平均绝对误差,STD表示平均绝对误差的标准偏差。
    下载: 导出CSV
  • [1] 孙剑. GNSS-R海洋反射接收机的控制设计及实现[D]. 北京: 中国科学院空间科学与应用研究中心, 2010.

    Sun Jian. Design and realization of control system for the GNSS-R receiver[D]. Beijing: Center for Space Science and Applier Research Chinese Academy of Sciences, 2010.
    [2] Martin-Neira M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331−355.
    [3] Park H, Valencia E, Camps A, et al. Delay tracking in spaceborne GNSS-R ocean altimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 57−61. doi: 10.1109/LGRS.2012.2192255
    [4] Ablain M, Cazenave A, Valladeau G, et al. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993-2008[J]. Ocean Science, 2009, 5(2): 193−201. doi: 10.5194/os-5-193-2009
    [5] Cardellach E, Nogues-Correig O, Ribo S, et al. Centimeter-level group-delay altimetric precision using the new PARIS interferometric technique[C]//American Geophysical Union, Fall Meeting 2010. AGU, 2010.
    [6] Berry R, Mattos P G, Kale I. Group delay and phase delay in GNSS systems[J]. Geo-spatial Information Science, 2013, 16(3): 210−219. doi: 10.1080/10095020.2013.834111
    [7] Guo Fei, Zhang Xiaohong, Wang Jinling. Timing group delay and differential code bias corrections for BeiDou positioning[J]. Journal of Geodesy, 2015, 89(5): 427−445. doi: 10.1007/s00190-015-0788-2
    [8] Semmling A M, Leister V, Saynisch J, et al. A phase-altimetric simulator: studying the sensitivity of earth-reflected GNSS signals to ocean topography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6791−6802. doi: 10.1109/TGRS.2016.2591065
    [9] Cardellach E, Ao C O, De la Torre Juárez M, et al. Carrier phase delay altimetry with GPS-reflection/occultation interferometry from low Earth orbiters[J]. Geophysical Research Letters, 2004, 31(10): L10402.
    [10] Germain O, Ruffini G. A revisit to the GNSS-R code range precision[C]//Proceedings of the GNSS-R’06 Workshop. The Netherlands, 2006.
    [11] Stosius R, Beyerle G, Semmling M, et al. Tsunami detection from space using GNSS Reflections: Results and activities from GFZ[C]//2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2010.
    [12] Carreno-Luengo H, Camps A, Ramos-Pérez I, et al. Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1493−1500. doi: 10.1109/JSTARS.2014.2320298
    [13] Carreno-Luengo H, Camps A, Perez-Ramos I, et al. 3Cat-2: A P(Y) and C/A GNSS-R experimental nano-satellite mission[C]//IEEE International Geoscience and Remote Sensing Symposium. Melbourne, VIC, Australia: IEEE, 2014.
    [14] Rius A, Fabra F, Ribó S, et al. PARIS Interferometric Technique proof of concept: Sea surface altimetry measurements[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE, 2012.
    [15] Park J, Johnson J T, O'Brien A, et al. Studies of TDS-1 GNSS-R ocean altimetry using a “full DDM” retrieval approach[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 2016.
    [16] Mashburn J, Axelrad P, Lowe S T, et al. Global ocean altimetry with GNSS reflections from TechDemoSat-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 4088−4097. doi: 10.1109/TGRS.2018.2823316
    [17] Zhang Yun, Li Binbin, Tian Luman, et al. Phase altimetry using reflected signals from BeiDou GEO satellites[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1410−1414. doi: 10.1109/LGRS.2016.2578361
    [18] Larson K M, Ray R D, Nievinski F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200−1204. doi: 10.1109/LGRS.2012.2236075
    [19] Cardellach E, Rius A, Martín-Neira M, et al. Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4992−5004. doi: 10.1109/TGRS.2013.2286257
    [20] Semmling A M, Beckheinrich J, Wickert J, et al. Sea surface topography retrieved from GNSS reflectometry phase data of the GEOHALO flight mission[J]. Geophysical Research Letters, 2014, 41(3): 954−960. doi: 10.1002/2013GL058725
    [21] Zhang Yun, Tian Luman, Meng Wanting, et al. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4130−4140. doi: 10.1109/JSTARS.2015.2446684
    [22] 沈思明, 张云, 杨树瑚, 等. GNSS反射信号海面高度测量及风速对反演精度的影响分析[J]. 全球定位系统, 2017, 42(4): 83−89, 101.

    Shen Siming, Zhang Yun, Yang Shuhu, et al. Sea surface altimetry using GNSS-R signal and analysis of retrieval accuracy influenced by wind speed[J]. Gnss World of China, 2017, 42(4): 83−89, 101.
    [23] Alonso-Arroyo A, Querol J, Lopez-Martinez C, et al. SNR and standard deviation of cGNSS-R and iGNSS-R scatterometric measurements[J]. Sensors, 2017, 17(12): 183. doi: 10.3390/s17010183
    [24] Niell A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B2): 3227−3246. doi: 10.1029/95JB03048
    [25] Stammer D, Ray R D, Andersen O B, et al. Accuracy assessment of global barotropic ocean tide models[J]. Reviews of Geophysics, 2014, 52(3): 243−282. doi: 10.1002/2014RG000450
    [26] Haddad M, Hachemi H, Taibi H. Assessment of Gravity Anomaly Surfaces (DTU10, EGM2008 and ITG-Goce02) in Western Mediterranean Sea[J]. Mediterranean Journal of Modeling and Simulation, 2015, 3(1): 87−99.
    [27] Clarizia M P, Ruf C, Cipollini P, et al. First spaceborne observation of sea surface height using GPS-Reflectometry[J]. Geophysical Research Letters, 2016, 43(2): 767−774. doi: 10.1002/2015GL066624
    [28] Li Weiqiang, Cardellach E, Fabra F, et al. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals[J]. Geophysical Research Letters, 2017, 44(16): 8369−8376. doi: 10.1002/2017GL074513
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  110
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-22
  • 修回日期:  2019-09-06
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回