留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋短排列多道反射地震数据观测系统重定义与沉放深度校正

张圣 高金耀 丁维凤 沈中延 刁云云

张圣,高金耀,丁维凤,等. 海洋短排列多道反射地震数据观测系统重定义与沉放深度校正[J]. 海洋学报,2020,42(3):140–148,doi:10.3969/j.issn.0253−4193.2020.03.013
引用本文: 张圣,高金耀,丁维凤,等. 海洋短排列多道反射地震数据观测系统重定义与沉放深度校正[J]. 海洋学报,2020,42(3):140–148,doi:10.3969/j.issn.0253−4193.2020.03.013
Zhang Sheng,Gao Jinyao,Ding Weifeng, et al. The application of geometric re-definition and sinking depth correction to the marine multi-channel short-array seismic reflection data[J]. Haiyang Xuebao,2020, 42(3):140–148,doi:10.3969/j.issn.0253−4193.2020.03.013
Citation: Zhang Sheng,Gao Jinyao,Ding Weifeng, et al. The application of geometric re-definition and sinking depth correction to the marine multi-channel short-array seismic reflection data[J]. Haiyang Xuebao,2020, 42(3):140–148,doi:10.3969/j.issn.0253−4193.2020.03.013

海洋短排列多道反射地震数据观测系统重定义与沉放深度校正

doi: 10.3969/j.issn.0253-4193.2020.03.013
基金项目: 国家自然科学基金(41576069,41776189);2019年度南极周边海域海洋地球物理考察(CHINARE2019-01-03);全球变化与海气相互作用专项(GASI-GEOGE-05)。
详细信息
    作者简介:

    张圣(1993—),男,山东省潍坊市人,主要从事海洋地球物理研究。E-mail:zsheng93@foxmail.com

    通讯作者:

    高金耀,男,研究员,主要从事地球物理调查和海底构造及动力解释研究。E-mail:gaojy@sio.org.cn

  • 中图分类号: P631.4

The application of geometric re-definition and sinking depth correction to the marine multi-channel short-array seismic reflection data

  • 摘要: 短排列多道反射地震接收缆较短,无水鸟、磁罗经、尾标等定位定深设备,给常规数据处理带来诸如观测系统定义等棘手问题;另外,无定深设备会造成接收缆不同接收段的沉放深度不同,破坏反射数据理论双曲线时距曲线关系。针对短排列多道反射地震数据,本文充分利用现场导航数据,计算实际激发点轨迹,再通过反距离比线性插值算法计算检波点的轨迹坐标,获得整个排列的实际观测系统参数。对因沉放深度不一致造成的扭曲时距曲线反射波,文中利用理论双曲线先计算共中心点道集的理论反射波位置,再推算排列中各接收道不同沉放深度处的静校正量,通过静校正拟合运算,消除接收排列非一致深度引起的反射波同相轴扭曲现象。将上述处理方法应用于南极海域短排列多道反射地震数据,最终获得了高分辨率叠加剖面,为后续地质解释提供了保障。
  • 图  1  南极罗斯海地震测线位置

    Fig.  1  The location of seismic line in the Ross Sea

    图  2  海洋地震勘探拖缆姿态

    Fig.  2  Towing cable state of marine seismic exploration

    图  3  基于直线假设的常规观测系统

    Fig.  3  Conventional geometry based on linear hypothesis

    图  4  放炮时间间隔(a)、船速(b)、炮间距(c)随激发点点号变化曲线

    Fig.  4  Shot time interval (a), ship speed (b) and shot interval (c) curve of source point number

    图  5  检波点与激发点间空间位置关系

    Fig.  5  Spatial position relationship between the receiving points and the shot points

    图  6  基于直线假设定义的观测系统共反射点轨迹(a)与叠加次数(b)

    Fig.  6  Common reflection point trajectory (a) and the stacking fold (b) of the geometry defined by linear hypothesis

    图  7  基于导航数据定义的观测系统共反射点轨迹(a)与叠加次数(b)

    Fig.  7  Common reflection point trajectory (a) and the stacking fold (b) of the geometry based on navigation data

    图  8  海洋地震勘探基准面静校正

    S表示激发点,R表示检波点;S′,R′表示归算到基准面的激发点、检波点

    Fig.  8  Datum static correction of marine seismic exploration

    S is the source point, R is the receive point; S′ and R′ are the projection points of S and R onto the datum plane, respectively

    图  9  海洋地震勘探CMP地震波传播示意图

    Fig.  9  Schematic diagram of theoretical seismic wave propagation

    图  10  共中心点道集校正

    a图为校正前,b图为校正后,图中红色虚线为海底同相轴实际反射位置,蓝色为理论反射位置

    Fig.  10  Common mid-point gather correction

    a is before the correction, b is after the correction, the red dotted line represents the real reflection of the bottom, blue dotted line represents the theoretic reflection of the bottom

    图  11  共炮检距道集校正

    a图为校正前,b图为校正后

    Fig.  11  Common offset gather correction

    a is before the correction, b is after the correction

    图  12  叠加剖面排列整体深度校正

    a图为校正前,b图为校正后

    Fig.  12  Stack section alignment overall depth correction

    a is before the correction, b is after the correction

    图  13  叠加效果分析

    a图是基于直线定义观测系统,未做静校正处理前的叠加剖面,b图为经过实际激发点坐标观测系统定义与静校正后的叠加剖面

    Fig.  13  Analysis of stack section

    a is based on linear definiton observation system, a is the stacked section based on linear-defined geometric system and without static correction; b is the stacked section based on real-position-defined geometric system and with static correction

    表  1  海上地震勘探采集参数

    Tab.  1  Acquisition parameters for marine seismic exploration

    接收道数道间距缆长最小偏移距放炮方式
    24道6.25 m200 m36 m等时放炮
    设计放炮时间设计船速采样间隔震源类型震源能量
    5 s5 kn4 000 ms电火花震源13 kJ
      注:震源采用震源筏,沉放深度为0,拖缆沉放深度不一致。
    下载: 导出CSV
  • [1] 孟庆生, 楚贤峰, 郭秀军, 等. 高分辨率数据处理技术在近海工程地震勘探中的应用[J]. 地球物理学进展, 2007, 22(3): 1006−1010. doi: 10.3969/j.issn.1004-2903.2007.03.053

    Meng Qingsheng, Chu Xianfeng, Guo Xiujun, et al. The application of high resolution seismic data processing technique in multi-channel shallow offshore engineering seismic surveys[J]. Progress in Geophysics, 2007, 22(3): 1006−1010. doi: 10.3969/j.issn.1004-2903.2007.03.053
    [2] 朱洪昌, 朱莉, 玄长虹, 等. 运用高分辨率地震资料处理技术识别薄储层及微幅构造[J]. 石油地球物理勘探, 2010, 45(S1): 90−93, 129.

    Zhu Hongchang, Zhu Li, Xuan Changhong, et al. Application of high resolution seismic data processing technique to identify thin reservoir and subtle structure[J]. Oil Geophysical Prospecting, 2010, 45(S1): 90−93, 129.
    [3] 杨文达, 刘望军. 海洋高分辨率地震技术在浅部地质勘探中的运用[J]. 海洋石油, 2007, 27(2): 18−25. doi: 10.3969/j.issn.1008-2336.2007.02.005

    Yang Wenda, Liu Wangjun. Marine high-resolution seismic techniques applying in the geological exploration of shallow strata[J]. Offshore Oil, 2007, 27(2): 18−25. doi: 10.3969/j.issn.1008-2336.2007.02.005
    [4] 王海平, 张伟, 李春雷, 等. 海底浅层地质灾害的高分辨率地震识别技术[J]. 海洋科学, 2014, 38(7): 103−109. doi: 10.11759/hykx20130422003

    Wang Haiping, Zhang Wei, Li Chunlei, et al. High resolution seismic identification of seafloor shallow geological hazards[J]. Marine Sciences, 2014, 38(7): 103−109. doi: 10.11759/hykx20130422003
    [5] 於国平, 刘党卫, 廖昌忠. 深海地震勘探多缆施工电缆位置控制措施[C]//中国石油学会2013年物探技术研讨会论文集. 保定: 中国石油学会, 中国地球物理学会, 2013.

    Yu Guoping, Liu Dangwei, Liao Changzhong. Measures for controlling the position of multi-cable construction cables in deep-sea seismic exploration[C]//Chinese petroleum society, Geophysical Technology Seminar. Baoding: China Petroleum Institute, China Geophysical Society, 2013.
    [6] Ambs L D, Chambers R E. Seismic streamer position control module[P]. [2000-01-04]. U.S.: 6011752.
    [7] Bittleston S H. Control devices for controlling the position of a marine seismic streamer[P]. [2005-05-05]. U.S.: 20050209783.
    [8] 王兆国, 程顺有, 刘财. 地球物理勘探中几种二维插值方法的误差分析[J]. 吉林大学学报: 地球科学版, 2013, 43(6): 1997−2004.

    Wang Zhaoguo, Cheng Shunyou, Liu Cai. Error analysis of several two-dimensional interpolation methods in the geophysical exploration[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(6): 1997−2004.
    [9] 丁维凤, 李家彪, 高金耀, 等. 浅水无定位拖缆观测系统定义及多次波压制效果分析[J]. 地球物理学报, 2017, 60(9): 3685−3692. doi: 10.6038/cjg20170932

    Ding Weifeng, Li Jiabiao, Gao Jinyao, et al. Definition of seismic geometry for short non-position receivers and multiples attenuation in shallow water[J]. Chinese Journal of Geophysics, 2017, 60(9): 3685−3692. doi: 10.6038/cjg20170932
    [10] 陆基孟. 地震勘探原理[M]. 东营: 中国石油大学出版社, 2009.

    Lu Jimeng. Principle of Seismic Exploration[M]. Dongying: China University of Petroleum Press, 2009.
    [11] Dave M. Static corrections—a review, Part Ⅰ, PartⅡ, PartⅢ[J]. The Leading Edge, 1993, 12(1, 2, 3): 43−216.
    [12] 李丽青, 徐华宁, 舒虎. 涌浪静校正技术在海洋单道地震资料处理中的应用[J]. 物探与化探, 2007, 31(4): 339−343. doi: 10.3969/j.issn.1000-8918.2007.04.015

    Li Liqing, Xu Huaning, Shu Hu. The application of the wave static correction method to marine single-channel seismic data processing[J]. Geophysical and Geochemical Exploration, 2007, 31(4): 339−343. doi: 10.3969/j.issn.1000-8918.2007.04.015
    [13] 罗进华, 潘国富, 丁维凤. 消除涌浪对海底声学地层剖面影响的处理技术研究[J]. 声学技术, 2009, 28(1): 21−24.

    Luo Jinhua, Pan Guofu, Ding Weifeng. Research on processing technique of eliminating wave-induced distortion effect on sub-bottom profile[J]. Technical Acoustics, 2009, 28(1): 21−24.
    [14] 丁维凤, 冯霞, 傅晓明, 等. 海上单道地震与浅地层剖面数据海浪改正处理研究[J]. 海洋学报, 2012, 34(4): 91−98.

    Ding Weifeng, Feng Xia, Fu Xiaoming, et al. Marine wave correction research on single channel seismic data and a subbottom profile[J]. Haiyang Xuebao, 2012, 34(4): 91−98.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  191
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 修回日期:  2019-03-19
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回