Jason-3 global statistical assessment based on Jason-2
-
摘要: Jason-3卫星高度计于2016年1月17日成功发射,2016年2月12日进入预定轨道,与Jason-2高度计同轨进入编队飞行阶段,并落后Jason-2高度计约1分20秒,两者相距约560 km。2016年9月1日,Jason-2高度计变换轨道,编队飞行阶段结束,两高度计进入平行轨道,以增加卫星高度计对地观测的空间覆盖。本研究主要开展了Jason-3高度计的数据质量的评估与检验,包括Jason-3高度计数据可用性和有效性的验证,以及Jason-3高度计和校正辐射计各参数的数据质量监测。重点开展了Jason-2与Jason-3高度计各项参数的综合比较,利用Jason-2与Jason-3高度计编队飞行阶段的数据精确评估了两高度计参数的一致性,并从全球数据角度分析了Jason-3高度计获取各参数的能力以及稳定性;通过与Jason-2互交叉点比较分析评估Jason-3高度计海面高度数据质量情况,验证Jason-3高度计数据精度。结果表明,Jason-3高度计的数据质量满足高度计测高的要求,具有与Jason-1、Jason-2、T/P等高度计相同或更高的测高精度以监测全球海平面变化,此外,Jason-3有效波高参数数据质量明显优于Jason-2高度计。
-
关键词:
- Jason-3高度计 /
- Jason-2高度计 /
- 数据质量 /
- 评估
Abstract: Jason-3 satellite was successfully launched on January 17, 2016, and was put on its nominal orbit on February 12, 2016. Jason-3 was flying in formation with Jason-2 only 1 minute 20 seconds, and was about 560 km from Jason-2. Jason-2 was moved to its new interleaved orbit on September 1, 2016. Two orbits were parallel to increase the spatial coverage of satellite observations. The objectives of this paper are to assess Jason-3 data quality and to estimate the altimetry system performance includes validation of Jason-3 data availability and data quality monitoring of Jason-3 and radiometer parameters. The objectives focused on comprehensive comparison of the parameters of the Jason-2 and Jason-3, accurately evaluated the consistency of the two altimeter parameters using the opportunity that the missions were on the same ground track during the formation flight phase, analyzed the ability and stability of the Jason-3 from the perspective of global data, verified Jason-3 data accuracy by self-crossover analysis and dual crossover analysis with Jason-2. From the results presented here, it is demonstrated that the Jason-3 mission fulfils the requirements of high precision altimetry. It allows continuing the observation of the sea surface height variations at the same or higher accuracy as Jason-1, Jason-2 and T/P. In addition, significant wave height quality of Jason-3 data is significantly better than the Jason-2.-
Key words:
- Jason-3 satellite /
- Jason-2 satellite /
- data quality /
- evaluation
-
表 1 Jason-2和Jason-3高度计和辐射计数据编辑中的参数阈值
Tab. 1 Thresholds used for altimeter and radiometer parameters in the Jason-2 and Jason-3 editing procedures
参数 最小值 最大值 参数 最小值 最大值 20 Hz测距数据观测数 10 — 固体潮校正/m −1 1 轨道高度−距离测量值/m −130 100 极潮校正/m −0.015 0.015 20 Hz测距标准差/m — 0.2 Ku波段有效波高/m 0 11 模型干对流层校正/m −2.5 −1.9 Ku波段后向散射系数/dB 7 30 辐射计湿对流层校正/m −0.5 −0.001 风速/m·s−1 0 30 Ku波段电离层校正/m −0.4 0.04 后向散射系数标准差/dB — 1 Ku波段海况偏差/m −0.5 0 后向散射系数观测数 10 — 潮汐校正/m −5 5 Ku波段偏指向角平方/(°)2 −0.2 0.64 注:—表示对最大值(最小值)没有限制要求。 -
[1] 崔伟, 王伟, 马毅, 等. 基于1993–2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2): 16−28.Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993-2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2): 16−28. [2] 胡冬, 陈希, 毛科峰, 等. 黑潮延伸体邻近区域中尺度涡特征统计分析[J]. 海洋与湖沼, 2018, 49(3): 497−511.Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics of mesoscale eddies near the kuroshio extension region[J]. Ocean and Lakes, 2018, 49(3): 497−511. [3] 赵杰, 汪一航, 王永刚, 等. 基于卫星高度计资料提取浙江近海的潮汐信息[J]. 应用海洋学学报, 2018, 37(3): 356−365. doi: 10.3969/J.ISSN.2095-4972.2018.03.007Zhao Jie, Wang Yihang, Wang Yonggang, et al. Extraction of tidal information on Zhejiang offshore based on satellite altimetry data[J]. Journal of Applied Oceanography, 2018, 37(3): 356−365. doi: 10.3969/J.ISSN.2095-4972.2018.03.007 [4] 王天驹, 齐琳琳, 朱江, 等. HY-2卫星高度计波高资料在集合最优插值同化中的应用研究——以台风“Lipee”为例[J]. 海洋学报, 2017, 39(2): 29−38.Wang Tianju, Qi Linlin, Zhu Jiang, et al. Application studies of using HY-2 satellite altimeter wave data in ensemble optimal interpolation method——"Lipee" for instance[J]. Haiyang Xuebao, 2017, 39(2): 29−38. [5] 贾永君, 林明森, 张有广. 海洋二号卫星A星雷达高度计在海洋防灾减灾中的应用[J]. 卫星应用, 2018(5): 34−39. doi: 10.3969/j.issn.1674-9030.2018.05.010Jia Yongjun, Lin Mingsen, Zhang Youguang. Application of ocean altimeter a satellite radar altimeter in marine disaster prevention and mitigation[J]. Satellite Applications, 2018(5): 34−39. doi: 10.3969/j.issn.1674-9030.2018.05.010 [6] 赵小阳, 李建成, 王正涛, 等. 利用卫星测高技术监测厄尔尼诺和拉尼娜现象[J]. 海洋测绘, 2007, 27(1): 41−44. doi: 10.3969/j.issn.1671-3044.2007.01.011Zhao Xiaoyang, Li Jiancheng, Wang Zhengtao, et al. Using satellite altimetry technique for monitoring El Niño and La Nña phenomenon[J]. Marine Surveying and Mapping, 2007, 27(1): 41−44. doi: 10.3969/j.issn.1671-3044.2007.01.011 [7] 杨磊, 周兴华, 彭海龙, 等. 基于Jason-2的Saral/AltiKa高度计全球统计评估与交叉定标[J]. 海洋科学进展, 2014, 32(4): 482−490. doi: 10.3969/j.issn.1671-6647.2014.04.005Yang Lei, Zhou Xinghua, Peng Hailong, et al. Global assessment and cross-calibration of Saral/AltiKa based on Jason-2 altimeter[J]. Advances in Marine Science, 2014, 32(4): 482−490. doi: 10.3969/j.issn.1671-6647.2014.04.005 [8] Prandi P, Philipps S, Pignot V, et al. SARAL/AltiKa global statistical assessment and cross-calibration with jason-2[J]. Marine Geodesy, 2015, 38(S1): 297−312. [9] Chambers D P, Ries J C, Urban T J. Calibration and verification of jason-1 using global along-track residuals with TOPEX special issue: jason-1 calibration/validation[J]. Marine Geodesy, 2003, 26(3/4): 305−317. doi: 10.1080/714044523 [10] 彭海龙, 林明森, 穆博, 等. HY-2A卫星雷达高度计数据的全球统计评价及质量分析[J]. 海洋学报, 2015, 37(7): 54−66.Peng Hailong, Lin Mingsen, Mu Bo, et al. Global statistical evaluation and performance analysis of HY-2A satellite radar altimeter data[J]. Haiyang Xuebao, 2015, 37(7): 54−66. [11] Dorandeu J, Ablain M, Faugère Y, et al. Jason-1 global statistical evaluation and performance assessment: Calibration and cross-calibration results[J]. Marine Geodesy, 2004, 27(3/4): 345−372. doi: 10.1080/01490410490889094 [12] Ablain M, Philipps S, Picot N, et al. Jason-2 global statistical assessment and cross-calibration with Jason-1[J]. Marine Geodesy, 2010, 33(S1): 162−185. doi: 10.1080/01490419.2010.487805 [13] 翟国君, 黄漠涛, 谢锡君, 等. 卫星测高数据处理的理论与方法[M]. 北京: 测绘出版社, 2000.Zhai Guojun, Huang Motao, Xie Xijun, et al. Theories and Methods of Satellite Altimetry Data Processing[M]. Beijing: Surveying and Mapping Press, 2000. [14] 汪海洪, 罗北. 计算测高卫星地面轨迹交叉点的快速数值算法[J]. 武汉大学学报: 信息科学版, 2017, 42(3): 293−298.Wang Haihong, Luo Bei. Fast numerical algorithm for the calculation of altimetric crossovers from satellite ground tracks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 293−298. [15] Wessel P. Tools for analyzing intersecting tracks: The x2sys package[J]. Computers & Geosciences, 2010, 36(3): 348−354. [16] Desjonquères J D, Carayon G, Steunou N, et al. Poseidon-3 radar altimeter: new modes and in-flight performances[J]. Marine Geodesy, 2010, 33(S1): 53−79. doi: 10.1080/01490419.2010.488970 [17] 崔伟. 多源卫星高度计海面高度异常数据融合研究[D]. 青岛: 国家海洋局第一海洋研究所, 2016.Cui Wei. The study of merging sea level anomalies data derived from multi-satellite altimeter[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2016.