留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋沉积物不同相态中Sr、Nd同位素提取方法研究

张颖 张辉 王小静 刘季花 汪虹敏 朱爱美 胡宁静

张颖,张辉,王小静,等. 海洋沉积物不同相态中Sr、Nd同位素提取方法研究[J]. 海洋学报,2020,42(2):155–166,doi:10.3969/j.issn.0253−4193.2020.02.016
引用本文: 张颖,张辉,王小静,等. 海洋沉积物不同相态中Sr、Nd同位素提取方法研究[J]. 海洋学报,2020,42(2):155–166,doi:10.3969/j.issn. 0253−4193.2020.02.016
Zhang Ying,Zhang Hui,Wang Xiaojing, et al. Sequential extraction of Sr and Nd isotope from Fe–Mn oxyhydroxide and detrital in marine sediments[J]. Haiyang Xuebao,2020, 42(2):155–166,doi:10.3969/j.issn.0253−4193.2020.02.016
Citation: Zhang Ying,Zhang Hui,Wang Xiaojing, et al. Sequential extraction of Sr and Nd isotope from Fe–Mn oxyhydroxide and detrital in marine sediments[J]. Haiyang Xuebao,2020, 42(2):155–166,doi:10.3969/j.issn.0253−4193.2020.02.016

海洋沉积物不同相态中Sr、Nd同位素提取方法研究

doi: 10.3969/j.issn.0253-4193.2020.02.016
基金项目: 国际海域资源调查与开发“十三五”规划项目(DY135-R2-1-01,DY135-R2-1-03);国家自然科学基金项目(41676053);国家自然科学基金青年科学基金项(41706068,41606075)。
详细信息
    作者简介:

    张颖(1986—),女,山西省晋中县人,助理工程师,主要从事海洋沉积物元素与同位素分析研究。E-mail:zhangyinghj@163.com

    通讯作者:

    刘季花(1965—),女,研究员,主要从事海洋沉积地球化学方面研究。E-mail:jihliu@fio.org.cn

  • 中图分类号: P736.41

Sequential extraction of Sr and Nd isotope from Fe–Mn oxyhydroxide and detrital in marine sediments

  • 摘要: 海洋沉积物中Fe-Mn氧化物相和残渣态的Sr、Nd同位素组成能够敏感地指示洋流循环及物质来源,但实验室对沉积物中上述相态的Sr和Nd同位素的提取易产生过量或提取不完全,进而影响同位素测定结果的准确性,因此制定有效的提取流程显得非常重要。本文采用不同浓度盐酸羟胺(Hydroxylamine Hydrochloride,HH)与醋酸(Acetic Acid,HAc)混合溶液对中印度洋海盆深海沸石黏土、北极半深海沉积物以及安达曼海近海沉积物的Fe-Mn氧化物相进行提取,残渣态用HNO3-HF高压密闭消解法溶融,测定了各相态的主微量元素含量及Sr、Nd同位素组成,通过分析不同实验条件下得到的Fe-Mn氧化物相与残渣态的稀土元素(REE)配分模式、Al/Nd含量比值及Sr、Nd同位素组成,建立了3种不同成因类型海洋沉积物不同相态的化学提取方法。提取深海沸石黏土中Fe-Mn氧化物相的理想试剂条件为0.25 mol/L HH和15% HAc,北极半深海沉积物和安达曼海近海沉积物的试剂条件为0.5 mol/L HH和15% HAc。该方法可以准确获得沉积物中Fe-Mn氧化物相与残渣态的Sr、Nd同位素组成信息,为古海洋学的研究提供方法支持。
  • 图  1  连续相态提取实验流程

    Fig.  1  Flowchart of the procedures for sequential extraction experiment

    图  2  不同实验条件下Sr、Nd同位素结果

    Fig.  2  Sr and Nd isotope results from experimental investigations

    图  3  3种类型沉积物中Fe-Mn氧化物相和残渣态的稀土元素后太古宙澳大利亚页岩标准化模式图

    Fig.  3  Normalized REE with Post-Archean Australian Shale Composite of both Fe-Mn fraction and residue from three types of sediments

    图  4  3个样品Fe-Mn氧化物相和残渣态中元素Al/Nd的比值

    Fig.  4  Element ratios (Al/Nd) for Fe-Mn fraction and residue of the three samples presented

    表  1  3个沉积物样品采样信息和特征

    Tab.  1  Sample locations and characteristics of sediments analyzed in this study

    实验编号样品号海区纬度经度水深/m粒级组分/%沉积物类型
    粉砂黏土
    AGC19中印度洋海盆3°53′S8°55′E4 6430.0368.8431.16深海黏土(含有铁锰微结核)
    BIS4C格陵兰海68°42′N14°48’W1 5955.3661.9832.66黏土质粉砂
    CADM-S18安达曼海6°57’S97°55′E33520.0571.098.88砂质粉砂
    下载: 导出CSV

    表  2  3个样品中主、微量元素及稀土元素含量(主量元素单位:%, 微量元素单位:10-6)

    Tab.  2  Contents of major(%), trace and rare earth elements(10-6) of 3 samples from different areas

    样品Al2O3CaOFe2O3K2OMgOMnONa2OP2O5TiO2SiO2BaSrZnZrCrCoNi
    A11.384.1413.222.683.123.765.022.590.5938.3240432224320043249765
    B10.3416.525.991.872.280.213.550.210.8638.3759365477132602335
    C10.867.493.631.852.050.043.220.130.4950.712173177519054927
    样品CuYLaCePrNdSmEuGdTbDyHoErTmYbLuΣREE
    A68043427121265.628160.7214.5056.810.6166.913.0437.255.5133.675.531 133
    B302328576.7254.951.354.460.744.570.852.380.382.330.35139
    C182431637.1265.040.914.300.734.400.832.440.392.470.39149
    下载: 导出CSV

    表  3  不同浓度盐酸羟氨(CH·H)与不同质量百分比浓度醋酸(CHAc)混合溶液条件

    Tab.  3  The mixture of hydroxylamine hydrochloride and acetic acid at different concentrations

    编号CH·H/mol·L−1CHAc/%编号CH·H /mol·L−1CHAc/%
    a12.0015b12.0025
    a21.0015b21.0025
    a30.5015b30.5025
    a40.2515b40.2525
    a50.1015b50.1025
    a60.0415b60.0425
    下载: 导出CSV

    表  4  ICP-OES标准溶液浓度

    Tab.  4  Concentrations of standard solutions measured by ICP-OES

    溶液混合标液编号
    空白STD 1STD 2STD 3STD 4
    多元素混合标准溶液1/μg·mL−10.0000.0250.1250.2501.250
    多元素混合标准溶液 2/μg·mL−10.0000.1000.5001.0005.000
    多元素混合标准溶液4/μg·mL−10.0000.0250.1250.2501.250
    下载: 导出CSV

    表  5  ICP-MS标准溶液浓度

    Tab.  5  Concentrations of standard solutions measured by ICP-MS

    溶液混合标液编号
    空白STD 1STD 2STD 3STD 4STD 5
    多元素混合标准溶液 1/ng·mL−10.000.502.505.0025.0050.00
    多元素混合标准溶液 2/ng·mL−10.001.005.0010.0050.00100.00
    多元素混合标准溶液 4/ng·mL−10.001.005.0010.0050.00100.00
    下载: 导出CSV

    表  6  不同提取条件下Fe-Mn氧化物相和残渣态元素在全样中的百分含量(%)

    Tab.  6  Percentage of representative elements in different chemical phase from leaching tests(%)

    样品AlCaFeMnSrNd
    Fe-Mn
    氧化物相
    残渣态Fe-Mn
    氧化物相
    残渣态Fe-Mn
    氧化物相
    残渣态Fe-Mn
    氧化物相
    残渣态Fe-Mn
    氧化物相
    残渣态Fe-Mn
    氧化物相
    残渣态
    Aa13.8574.4120.976.4118.9064.4769.271.6324.2113.3989.258.47
    Aa22.9479.2924.0011.3016.5870.3370.852.3229.3115.4078.9422.18
    Aa32.5779.7722.9815.3115.2070.2771.232.9729.6617.1868.0132.84
    Aa42.3582.3120.8016.2715.4473.5774.843.7729.6418.3055.0139.24
    Aa52.0280.8917.3419.0213.4274.2272.814.4626.4120.0541.9247.78
    Aa62.1277.8113.1516.179.7577.6668.835.6820.0819.5539.3243.71
    Ab14.1678.8628.717.8220.0365.6170.541.4631.8314.1787.8213.71
    Ab23.5179.2729.0810.5917.7268.7673.572.0234.7815.2683.0420.81
    Ab33.0478.9623.0515.1615.6071.3071.892.6330.1616.8763.5132.52
    Ab42.9078.4818.5214.7314.8968.8472.132.8626.8117.3456.1432.85
    Ab52.6177.9418.2223.3212.9871.6070.413.5327.5020.7541.0054.47
    Ab62.5678.1613.8924.3310.2978.2867.425.1221.9222.2535.1355.45
    Ba12.7973.041.397.1513.5272.1757.9217.402.5715.2521.0360.89
    Ba23.0274.831.518.3913.5274.8760.7920.022.7816.2420.6362.41
    Ba32.8276.161.497.1811.8475.1460.9420.972.7516.0017.3062.84
    Ba42.7574.391.549.2711.1774.6361.7221.792.7417.3815.8768.06
    Ba52.4169.881.819.079.3470.6461.4721.372.6616.8912.5869.46
    Ba62.1375.661.569.907.6877.4660.1323.732.5018.3810.4274.77
    Bb13.1574.531.529.2715.0270.1861.0920.082.6917.7222.4061.46
    Bb22.9672.561.419.6013.0570.7259.3420.702.6017.5219.9265.92
    Bb33.1971.041.538.9413.1871.2960.9720.102.7116.8818.4266.93
    Bb42.4974.031.239.689.8174.4352.6921.772.2217.7812.9764.60
    Bb52.4073.561.319.759.3873.7257.1321.942.2518.1912.1972.92
    Bb62.3270.021.379.248.5774.9557.3221.812.3016.7310.5770.51
    Ca12.7676.383.501.4820.4663.6219.5425.693.709.2625.1454.90
    Ca22.4276.863.381.4418.3665.4918.5026.843.569.3520.2760.77
    Ca31.9878.413.301.4616.3168.9916.7427.803.449.5116.9965.14
    Ca41.5088.443.451.2714.2284.7215.9831.543.589.2711.8173.32
    Ca51.1184.033.181.4712.6680.1914.6130.733.349.298.2372.85
    Ca60.8577.623.131.8110.3377.9226.2330.763.169.465.3775.11
    Cb13.0779.393.271.2822.1165.1419.2624.993.378.9923.9756.20
    Cb22.5480.612.951.5418.0568.6018.6226.523.169.2820.0859.01
    Cb31.9474.292.711.5014.6765.0115.7526.522.869.2314.2759.30
    Cb42.2897.253.100.9019.0394.0218.1330.043.289.0115.0470.71
    Cb51.2974.533.121.7113.3467.1815.2528.493.179.348.6965.65
    Cb60.8968.323.041.9710.5863.1313.4127.923.069.535.8968.85
    下载: 导出CSV

    表  7  不同提取条件下Fe-Mn氧化物相和残渣态中元素浓度及Sr、Nd同位素比值

    Tab.  7  Al, Sr and Nd concentration and Sr, Nd isotope ratios of Fe-Mn oxyhydroxide leaching phases and the respective detrital fraction

    样品Fe-Mn 氧化物相样品残渣态
    Al/%Sr/10−6 Nd/10−687Sr/86Sr143Nd/144NdεNdAl/NdAl/%Sr/10−6Nd/10−687Sr/86Sr143Nd/144NdεNdAl/Nd
    ±0.000 02±0.000 014±0.27±0.000 02±0.000 014±0.27
    Aa10.29972900.709 630.512 285−6.99.9Aa16.5963390.719 050.512 207−8.41 671
    Aa20.211132390.710 110.512 278−7.08.8Aa26.6969980.717 950.512 249−7.6680
    Aa30.181142050.709250.512 279−7.09.0Aa36.63761430.716 950.512 265−7.3462
    Aa40.171161810.709250.512 279−7.09.5Aa46.72801680.717 280.512 267−7.2399
    Aa50.151021360.709790.512 282−6.910.7Aa56.58872040.716 100.512 264−7.3322
    Aa60.16801340.709 910.512 274−7.111.9Aa66.49871920.716 370.512 267−7.2339
    Ab10.301212860.710 700.512 275−7.110.4Ab16.6964610.718 850.512 230−8.01 094
    Ab20.251332650.709 380.512 274−7.19.5Ab26.6869920.718 140.512 254−7.5725
    Ab30.221152040.709 240.512 284−6.910.6Ab36.55751420.717 250.512 270−7.2462
    Ab40.211061850.709 720.512 272−7.111.5Ab46.58781450.716 970.512 258−7.4455
    Ab50.191091340.709610.512 271−7.214.4Ab56.53932400.715 630.512 267−7.2272
    Ab60.18851120.709 210.512 277−7.016.5Ab66.38972380.716 120.512 271−7.2268
    Ba10.25278.320.709 040.512 443−3.8296Ba16.56164290.711 930.512 232−7.92 294
    Ba20.26287.990.708 630.512 457−3.5324Ba26.67173290.711 460.512 311−6.42 293
    Ba30.24296.720.708 680.512 461−3.5363Ba36.83172290.711 710.512 277−7.12 318
    Ba40.24286.180.708580.512 449−3.7387Ba46.62185320.710 990.512 357−5.52 090
    Ba50.21274.800.708540.512 443−3.8429Ba56.20179320.710 720.512 366−5.31 924
    Ba60.18264.070.708 530.512 436−3.9450Ba66.62192340.710 710.512 356−5.51 935
    Bb10.27288.670.708 700.512 453−3.6313Bb16.69190290.710 900.512 320−6.22 319
    Bb20.25277.590.708 700.512 456−3.6335Bb26.52188310.710 800.512 326−6.12 105
    Bb30.28287.300.708 620.512 447−3.7381Bb36.38181310.711 010.512 344−5.72 030
    Bb40.22235.090.708 590.512447−3.7423Bb46.57189300.710 820.512 355−5.52 191
    Bb50.21234.650.708 570.512 444−3.8447Bb56.52193340.710 680.512 327−6.11 929
    Bb60.20244.150.708 520.512 444−3.8491Bb66.21177330.710 940.512 340−5.81 899
    Ca10.20158.210.709 620.512 127−10.0249Ca15.9340220.727 620.511 989−12.72 723
    Ca20.18156.730.709 620.512 131−9.9266Ca25.9640240.727 640.511 977−12.92 476
    Ca30.14145.460.709 550.512 136−9.8264Ca36.0140260.727 420.511 992−12.62 356
    Ca40.11153.730.709 370.512 142−9.7296Ca46.7839290.726 800.512 017−12.12 362
    Ca50.08142.640.709 390.512 149−9.5311Ca56.4639290.727 450.512 025−12.02 258
    Ca60.06131.730.709 330.512 137−9.8358Ca65.9440290.726 410.512 001−12.42 023
    Cb10.23147.770.709 390.512 144−9.6290Cb16.1438220.728 080.511 960−13.22 765
    Cb20.19136.500.709 670.512 124−10.0285Cb26.1839230.727 320.511 991−12.62 674
    Cb30.14124.600.709 460.512 136−9.8308Cb35.6439230.727 560.511 967−13.12 453
    Cb40.17134.840.709 440.512 141−9.7347Cb47.5038280.726 750.512 021−12.02 692
    Cb50.10132.860.709 440.512 136−9.8339Cb55.7940260.727 380.512 026−11.92 223
    Cb60.07121.920.709 360.512 131−9.9340Cb65.1640270.726 550.512 005−12.41 942
    下载: 导出CSV
  • [1] Franzese A M, Hemming S R, Goldstein S L, et al. Reduced Agulhas leakage during the last glacial maximum inferred from an integrated provenance and flux study[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 72−88.
    [2] Hemming S R, van de Flierdt T, Goldstein S L, et al. Strontium isotope tracing of terrigenous sediment dispersal in the Antarctic Circumpolar Current: implications for constraining frontal positions[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(6): Q06N13.
    [3] Stumpf R, Frank M, Schönfeld J, et al. Climatically driven changes in sediment supply on the SW Iberian shelf since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2011, 312(1/2): 80−90.
    [4] Delmonte B, Basile-Doelsch I, Petit J R, et al. Comparing the Epica and Vostok dust records during the last 220, 000 years: stratigraphical correlation and provenance in glacial periods[J]. Earth-Science Reviews, 2004, 66(1/2): 63−87.
    [5] Stichel T, Frank M, Rickli J, et al. The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean[J]. Earth and Planetary Science Letters, 2012, 317-318: 282−294. doi: 10.1016/j.jpgl.2011.11.025
    [6] Molina-Kescher M, Frank M, Hathorne E. South Pacific dissolved Nd isotope compositions and rare earth element distributions: water mass mixing versus biogeochemical cycling[J]. Geochimica et Cosmochimica Acta, 2014, 127: 171−189. doi: 10.1016/j.gca.2013.11.038
    [7] Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic intermediate water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12): 870−874. doi: 10.1038/ngeo360
    [8] Rutberg R L, Hemming S R, Goldstein S L. Reduced north Atlantic deep water flux to the glacial southern ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789): 935−938. doi: 10.1038/35016049
    [9] Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis[J]. Chemical Geology, 2002, 187(3/4): 179−199.
    [10] Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments[J]. Chemical Geology, 2007, 242(3/4): 351−370.
    [11] Palmer M R, Elderfield H. Rare earth elements and neodymium isotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 1986, 50(3): 409−417. doi: 10.1016/0016-7037(86)90194-8
    [12] Asahara Y, Tanaka T, Kamioka H, et al. Provenance of the north Pacific sediments and process of source material transport as derived from Rb–Sr isotopic systematics[J]. Chemical Geology, 1999, 158(3/4): 271−291.
    [13] Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi seas as derived from Sr and Nd isotopes: implications for recent climate change in the Arctic regions[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2012, 61-64: 155−171. doi: 10.1016/j.dsr2.2011.12.004
    [14] Grousset F E, Parra M, Bory A, et al. Saharan wind regimes traced by the Sr–Nd isotopic composition of subtropical Atlantic sediments: last glacial maximum vs today[J]. Quaternary Science Reviews, 1998, 17(4/5): 395−409.
    [15] Yasuda T, Asahara Y, Ichikawa R, et al. Distribution and transport processes of lithogenic material from the Amur River revealed by the Sr and Nd isotope ratios of sediments from the Sea of Okhotsk[J]. Progress in Oceanography, 2014, 126: 155−167. doi: 10.1016/j.pocean.2014.04.015
    [16] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844−851. doi: 10.1021/ac50043a017
    [17] Quevauviller P, Rauret G, Muntau H, et al. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments[J]. Fresenius' Journal of Analytical Chemistry, 1994, 349(12): 808−814. doi: 10.1007/BF00323110
    [18] 于增慧, 高玉花, 翟世奎, 等. 冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J]. 中国科学: 地球科学, 2012, 55(4): 665−674.

    Yu Zenghui, Gao Yuhua, Zhai Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough[J]. Science China Earth Sciences, 2012, 55(4): 665−674.
    [19] 邹亮, 韦刚健. 顺序提取法探讨沉积物中主量元素在不同相态的分配特征[J]. 海洋地质与第四纪地质, 2007, 27(2): 133−140.

    Zou Liang, Wei Gangjian. Distribution of major elements in sediment by sequential extraction procedures[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 133−140.
    [20] 杨丽, 高爱国, 张延颇, 等. 西北冰洋表层沉积物中重金属的赋存形态研究[J]. 台湾海峡, 2012, 31(4): 451−458.

    Yang Li, Gao Aiguo, Zhang Yanpo, et al. Study on the speciation of heavy metals in the sediments of the western Arctic Ocean[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(4): 451−458.
    [21] Piotrowski A M, Goldstein S L, Hemming S R, et al. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries[J]. Science, 2005, 307(5717): 1933−1938. doi: 10.1126/science.1104883
    [22] Piotrowski A M, Goldstein S L, Hemming S R, et al. Intensification and variability of ocean thermohaline circulation through the last deglaciation[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 205−220.
    [23] 曹鹏, 石学法, 李巍然, 等. 安达曼海东南部海域表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(5): 57−67.

    Cao Peng, Shi Xuefa, Li Weiran, et al. Rare earth element geochemistry of surface sediments in southeastern Andaman Sea and implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 57−67.
    [24] 何连花, 张俊, 高晶晶, 等. 地质样品Sr和Nd同位素的化学分离方法改进[J]. 海洋科学进展, 2014, 32(1): 78−83. doi: 10.3969/j.issn.1671-6647.2014.01.009

    He Lianhua, Zhang Jun, Gao Jingjing, et al. Improvement of the method for chemical separations of Sr and Nd in geological samples[J]. Advances in Marine Science, 2014, 32(1): 78−83. doi: 10.3969/j.issn.1671-6647.2014.01.009
    [25] Steiger R H, Jäger E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359−362. doi: 10.1016/0012-821X(77)90060-7
    [26] Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 2000, 168(3/4): 279−281.
    [27] Jacobsen S B, Wasserburg G J. Sm–Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139−155. doi: 10.1016/0012-821X(80)90125-9
    [28] Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011): 526−528. doi: 10.1038/314526a0
    [29] Henderson G M, Martel D J, O’Nions R K, et al. Evolution of seawater 87Sr86Sr over the last 400 ka: the absence of glacial/interglacial cycles[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 643−651.
    [30] Mokadem F, Parkinson I J, Hathorne E C, et al. High-precision radiogenic strontium isotope measurements of the modern and glacial ocean: limits on glacial–interglacial variations in continental weathering[J]. Earth and Planetary Science Letters, 2015, 415: 111−120. doi: 10.1016/j.jpgl.2015.01.036
    [31] Du Jianghui, Haley B A, Mix A C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction[J]. Geochimica et Cosmochimica Acta, 2016, 193: 14−35. doi: 10.1016/j.gca.2016.08.005
    [32] Molina-Kescher M, Frank M, Hathorne E C. Nd and Sr isotope compositions of different phases of surface sediments in the South Pacific: extraction of seawater signatures, boundary exchange, and detrital/dust provenance[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(9): 3502−3520. doi: 10.1002/2014GC005443
    [33] 赵葵东, 蒋少涌, 郑新源, 等. 海洋Nd同位素演化及古洋流循环示踪研究[J]. 地学前缘, 2009, 16(5): 160−171. doi: 10.3321/j.issn:1005-2321.2009.05.016

    Zhao Kuidong, Jiang Shaoyong, Zheng Xinyuan, et al. Nd isotope evolution of ocean waters and implications for paleo-ocean circulation[J]. Earth Science Frontiers, 2009, 16(5): 160−171. doi: 10.3321/j.issn:1005-2321.2009.05.016
    [34] 吴琼, 刘志飞. Nd同位素方法应用于示踪古洋流的研究进展[J]. 地球科学进展, 2010, 25(2): 220−229.

    Wu Qiong, Liu Zhifei. Research advance in tracing evolution pattern of paleo-currents by using Nd isotpic composition[J]. Advances in Earth Science, 2010, 25(2): 220−229.
    [35] Tachikawa K, Arsouze T, Bayon G, et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data[J]. Chemical Geology, 2017, 457: 131−148. doi: 10.1016/j.chemgeo.2017.03.018
    [36] Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input[J]. Reviews of Geophysics, 2002, 40(1): 1001. doi: 10.1029/2000RG000094
    [37] Tachikawa K, Roy-Barman M, Michard A, et al. Neodymium isotopes in the Mediterranean Sea: comparison between seawater and sediment signals[J]. Geochimica et Cosmochimica Acta, 2004, 68(14): 3095−3106. doi: 10.1016/j.gca.2004.01.024
    [38] Stumpf R, Frank M, Schönfeld J, et al. Late quaternary variability of Mediterranean outflow water from radiogenic Nd and Pb isotopes[J]. Quaternary Science Reviews, 2010, 29(19/20): 2462−2472.
    [39] Broecker W S, Gerard R, Ewing M, et al. Natural radiocarbon in the Atlantic Ocean[J]. Journal of Geophysical Research, 1960, 65(9): 2903−2931. doi: 10.1029/JZ065i009p02903
    [40] Bertram C J, Elderfield H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans[J]. Geochimica et Cosmochimica Acta, 1993, 57(9): 1957−1986. doi: 10.1016/0016-7037(93)90087-D
    [41] Colin C, Turpin L, Bertaux J, et al. Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles[J]. Earth and Planetary Science Letters, 1999, 171(4): 647−660. doi: 10.1016/S0012-821X(99)00184-3
    [42] Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Publication, 1985: 312.
    [43] 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 54(2): 197−203.

    Jiang Xuejun, Lin Xuehui, Yao De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China Earth Sciences, 2011, 54(2): 197−203.
    [44] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 1999: 239−279.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  92
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 修回日期:  2019-04-09
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回