留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长短期记忆神经网络在叶绿素a浓度预测中的应用

石绥祥 王蕾 余璇 徐凌宇

石绥祥,王蕾,余璇,等. 长短期记忆神经网络在叶绿素 a浓度预测中的应用[J]. 海洋学报,2020,42(2):134–142,doi:10.3969/j.issn.0253−4193.2020.02.014
引用本文: 石绥祥,王蕾,余璇,等. 长短期记忆神经网络在叶绿素 a 浓度预测中的应用[J]. 海洋学报,2020,42(2):134–142,doi:10.3969/j.issn.0253−4193. 2020.02.014
Shi Suixiang,Wang lei,Yu Xuan, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Haiyang Xuebao,2020, 42(2):134–142,doi:10.3969/j.issn.0253−4193.2020.02.014
Citation: Shi Suixiang,Wang lei,Yu Xuan, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Haiyang Xuebao,2020, 42(2):134–142,doi:10.3969/j.issn.0253−4193.2020.02.014

长短期记忆神经网络在叶绿素a浓度预测中的应用

doi: 10.3969/j.issn.0253-4193.2020.02.014
基金项目: 国家重点研发计划—“海洋环境安全保障”重点专项(2016YFC1401900,2016YFC1403200);天津市企业博士后创新项目择优资助项目(TJQYBSH2018025);国家海洋局东海分局青年科技基金(201615)。
详细信息
    作者简介:

    石绥祥(1966—),男,浙江省绍兴市人,研究员,从事海洋大数据分析预报技术研究。E-mail:shisuixiang@hotmail.com

    通讯作者:

    王蕾,博士,从事海洋大数据分析挖掘技术研究。E-mail:wangleidett727@163.com

  • 中图分类号: X524

Application of long term and short term memory neural network in prediction of chlorophyll a concentration

  • 摘要: 针对传统人工神经网络对叶绿素a浓度预测存在训练速度慢、收敛精度低、易陷入局部最优,尤其是无法灵活的利用任意长度的历史信息对叶绿素a浓度进行预测等问题,本文根据海洋各要素与叶绿素a浓度之间的长短期依赖程度,对叶绿素a浓度与各要素间的关系进行界定,分别将各要素与叶绿素a浓度之间的长期依赖关系与短期依赖关系分割开来,并且在长短期记忆(Long Short-Term Memory, LSTM)神经网络模型的基础上构建融合的LSTM预测模型,模型中的长期依赖关系与短期依赖关系分别使用不同的神经元,最终在模型的最上层进行长短期融合。本文选取三都澳站位的连续监测资料作为实验数据,实验结果表明本文构建的模型不仅具有训练误差下降快的优点,与其他3种经典的神经网络模型相比,预测精度也有显著提高。
  • 图  1  三都澳站位分布

    Fig.  1  Station location distribution map of Sandu Ao

    图  2  研究方法图

    Fig.  2  Research method map

    图  3  LSTM神经元结构

    Fig.  3  Neuron Structure of LSTM

    图  4  LSTM内部计算流程图

    Fig.  4  LSTM internal calculation flow chart

    图  5  Merged-LSTM结构图

    Fig.  5  The structure of Merged-LSTM

    图  6  要素间相似矩阵图

    Fig.  6  Similarity matrix diagram between elements

    图  7  模型训练误差下降情况

    Fig.  7  Decline of model training error

    图  8  实际叶绿素a浓度值和预测叶绿素a浓度值

    actual为真实值,Merged-LSTM为本文所提出的模型,RNN为递归神经网络,MLP为多层感知器,Regression为回归方法

    Fig.  8  Actual and predicted chlorophyll a concentration

    actual represents the true value, Merged-LSTM is the proposed model, RNN is recursive neural network, MLP is multilayer perceptron, Regression is the regression method

    图  9  实验结果图

    Merged-LSTM为本文所提出的模型,RNN为递归神经网络,MLP为多层感知器,Regression为回归方法

    Fig.  9  Experimental results

    Merged-LSTM is the proposed model, RNN is recursive neural network, MLP is multilayer perceptron, Regression is the regression method

    表  1  不同时延下相关系数

    Tab.  1  Correlation coefficient under different time delays

    123456
    温度(WD)−0.31−0.23−0.27−0.25−0.24−0.22
    PH值−0.42−0.42−0.35−0.39−0.32−0.39
    电导率(DDL)−0.38−0.38−0.38−0.38−0.38−0.38
    浊度(ZD) 0.48 0.43 0.44 0.43 0.43 0.43
    溶解氧(RJY)−0.29−0.22−0.22−0.22−0.22−0.23
    盐度(YD) 0.54 0.56 0.46 0.58 0.51 0.54
    电压(DY)−0.13−0.13−0.13−0.13−0.12−0.12
    下载: 导出CSV
  • [1] 史锐, 张红, 岳荣, 等. 基于小波理论的干旱区内陆湖泊叶绿素a的TM影像遥感反演[J]. 生态学报, 2017, 37(3): 1043−1053.

    Shi Rui, Zhang Hong, Yue Rong, et al. A wavelet theory based remote sensing inversion of chlorophyll a concentrations for inland lakes in arid areas using TM image data[J]. Acta Ecologica Sinica, 2017, 37(3): 1043−1053.
    [2] 罗建美, 霍永伟, 韩晓庆. 基于HJ卫星的近岸Ⅱ类水体叶绿素a浓度定量遥感反演研究——以滦河口北部海域为例[J]. 海洋学报, 2017, 39(4): 117−129.

    Luo Jianmei, Huo Yongwei, Han Xiaoqing. Inversion of chlorophyll a concentration in offshore Ⅱ. waters using HJ satellite data--Example in the north of the Luanhe Delta[J]. Haiyang Xuebao, 2017, 39(4): 117−129.
    [3] 盛琳, 陈静, 刘锐, 等. 一种水质分析方法: 基于GOCI影像的东平湖叶绿素a浓度估算[J]. 环境保护, 2017, 45(10): 60−63.

    Sheng Lin, Chen Jing, Liu Rui, et al. A method of water quality analysis: chlorophyll a concentration estimation of Dongping Lake based on GOCI image[J]. Environmental Protection, 2017, 45(10): 60−63.
    [4] Vollenweider R A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication[R]. Paris, France: OECD, 1968.
    [5] Jørgensen S E, Mejer H, Friis M. Examination of a lake model[J]. Ecological Modelling, 1978, 4(2/3): 253−278.
    [6] 毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34−43.

    Mao Jiangmei, Chen Xinjun, Yu Jing. Forecasting fishing ground of Thunnus alalunga based on BP neural network in the South Pacific Ocean[J]. Haiyang Xuebao, 2016, 38(10): 34−43.
    [7] 赵玉芹, 汪西莉, 蒋赛. 渭河水质遥感反演的人工神经网络模型研究[J]. 遥感技术与应用, 2009, 24(1): 63−67. doi: 10.11873/j.issn.1004-0323.2009.1.63

    Zhao Yuqin, Wang Xili, Jiang Sai. Study on neural network model for Weihe River water quality retrieving using remote-sensing image[J]. Remote Sensing Technology and Application, 2009, 24(1): 63−67. doi: 10.11873/j.issn.1004-0323.2009.1.63
    [8] 卢志娟, 朱玲, 裴洪平, 等. 基于小波分析与BP神经网络的西湖叶绿素a浓度预测模型[J]. 生态学报, 2008, 28(10): 4965−4973. doi: 10.3321/j.issn:1000-0933.2008.10.042

    Lu Zhijuan, Zhu Ling, Pei Hongping, et al. The model of chlorophyll a concentration forecast in the West Lake based on wavelet analysis and BP neural networks[J]. Acta Ecologica Sinica, 2008, 28(10): 4965−4973. doi: 10.3321/j.issn:1000-0933.2008.10.042
    [9] 周露洪, 谷孝鸿, 曾庆飞, 等. 利用BP神经网络短期预测太湖不同湖区叶绿素a浓度[J]. 水生态学杂志, 2012, 33(4): 1−6.

    Zhou Luhong, Gu Xiaohong, Zeng Qingfei, et al. Applications of back propagation neural network for short-term prediction of chlorophyll a concentration in different regions of Lake Taihu[J]. Journal of Hydroecology, 2012, 33(4): 1−6.
    [10] 杨柳, 韩瑜, 汪祖茂, 等. 基于BP神经网络的温榆河水质参数反演模型研究[J]. 水资源与水工程学报, 2013, 24(6): 25−28. doi: 10.11705/j.issn.1672-643X.2013.06.006

    Yang Liu, Han Yu, Wang Zumao, et al. Study on retrieval model of water quality parameter in Wenyu River based on BP neural network[J]. Journal of Water Resources and Water Engineering, 2013, 24(6): 25−28. doi: 10.11705/j.issn.1672-643X.2013.06.006
    [11] 仝玉华, 周洪亮, 黄浙丰, 等. 一种自优化RBF神经网络的叶绿素a浓度时序预测模型[J]. 生态学报, 2011, 31(22): 6788−6795.

    Tong Yuhua, Zhou Hongliang, Huang Zhefeng, et al. Time series prediction of the concentration of chlorophyll a based on RBF neural network with parameters self-optimizing[J]. Acta Ecologica Sinica, 2011, 31(22): 6788−6795.
    [12] Dekker A G, Brando V E, Anstee J M, et al. Imaging Spectrometry of Water[M]//van der Meer F D, de Jong S M. Imaging Spectrometry: Basic Principles and Prospective Applications. Dordrecht: Springer, 2002: 307-359.
    [13] 柴永强, 邵峰晶, 孙仁诚, 等. 基于决策树的MODIS影像赤潮智能检测技术[J]. 青岛大学学报:自然科学版, 2012, 25(2): 47−52.

    Chai Yongqiang, Shao Fengjing, Sun Rencheng, et al. The intelligent detection technology of redtide from modis imagery based on decision tree[J]. Journal of Qingdao University: Natural Science Edition, 2012, 25(2): 47−52.
    [14] 李修竹, 苏荣国, 张传松, 等. 基于支持向量机的长江口及其邻近海域叶绿素a浓度预测模型[J]. 中国海洋大学学报, 2019, 49(1): 69−76.

    Li Xiuzhu, Su Rongguo, Zhang Chuansong, et al. A Chl a prediction model based on support vector machine in Yangtze River estuaries and its Adjacent sea areas[J]. Periodical of Ocean University of China, 2019, 49(1): 69−76.
    [15] 钟令枢. 基于ARIMA-LSTM的架空线状态数据挖掘[D]. 广州: 华南理工大学, 2016.

    Zhong Lingshu. Overhead line status data mining based on ARIMA-LSTM[D]. Guangzhou: South China University of Technology, 2016.
    [16] Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[C]//Proceedings of the 9th International Conference on Artificial Neural Networks. Edinburgh, UK: IET, 1999.
    [17] Graves A. Supervised Sequence Labelling with Recurrent Neural Networks[M]. Heidelberg: Springer, 2012.
    [18] Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015.
    [19] Yang Yuting, Dong Junyu, Sun Xin, et al. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 207−211. doi: 10.1109/LGRS.2017.2780843
    [20] Greff K, Srivastava R K, Koutnik J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222−2232. doi: 10.1109/TNNLS.2016.2582924
    [21] Ma Xuezhe, Hovy E. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[M]. Stroudsburg: Association for Computational Linguistics, 2016.
    [22] Ordóñez J F, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): 115. doi: 10.3390/s16010115
    [23] Gers F A, Eck D, Schmidhuber J. Applying LSTM to time series predictable through time-window approaches[C]//Proceedings of the International Conference on Artificial Neural Networks. Vienna, Austria: Springer, 2001: 669−676.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  107
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 修回日期:  2019-06-28
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回