留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时荧光定量PCR分析中不同铁浓度处理下玛氏骨条藻内参基因的筛选

张梅 邢永泽 甄毓 米铁柱 于志刚

张梅,邢永泽,甄毓,等. 实时荧光定量PCR分析中不同铁浓度处理下玛氏骨条藻内参基因的筛选[J]. 海洋学报,2020,42(2):124–133,doi:10.3969/j.issn.0253−4193.2020.02.013
引用本文: 张梅,邢永泽,甄毓,等. 实时荧光定量PCR分析中不同铁浓度处理下玛氏骨条藻内参基因的筛选[J]. 海洋学报,2020,42(2):124–133,doi:10.3969/j.issn.0253−4193.2020.02.013
Zhang Mei,Xing Yongze,Zhen Yu, et al. Screening of the reference genes of Skeletonema marinoi under different concentration of Fe3+ conditions in real-time quantitative PCR analysis[J]. Haiyang Xuebao,2020, 42(2):124–133,doi:10.3969/j.issn.0253−4193.2020.02.013
Citation: Zhang Mei,Xing Yongze,Zhen Yu, et al. Screening of the reference genes of Skeletonema marinoi under different concentration of Fe3+ conditions in real-time quantitative PCR analysis[J]. Haiyang Xuebao,2020, 42(2):124–133,doi:10.3969/j.issn.0253−4193.2020.02.013

实时荧光定量PCR分析中不同铁浓度处理下玛氏骨条藻内参基因的筛选

doi: 10.3969/j.issn.0253-4193.2020.02.013
基金项目: 国家重点研发计划项目(2017YFC1404402);鳌山科技创新计划项目(2016ASKJ02)。
详细信息
    作者简介:

    张梅(1991—),女,陕西省泾阳县人,从事海洋微藻生理生化分子机制的研究。E-mail:zhangmeiouc@163.com

    通讯作者:

    甄毓,男,副教授,主要从事地球生物化学和分子生态学等领域的研究。E-mail:zhenyu@ouc.edu.cn

  • 中图分类号: Q331

Screening of the reference genes of Skeletonema marinoi under different concentration of Fe3+ conditions in real-time quantitative PCR analysis

  • 摘要: 实时荧光定量PCR(qRT-PCR)是定量分析基因表达的常用方法,选择合适的内参基因对准确分析目的基因表达水平至关重要。本研究以不同铁浓度培养条件下的玛氏骨条藻为材料,定量分析CytbEF-1αHPRTUBCGAPDHβ-actin以及β-tubulin 7个内参基因的表达情况,并利用GeNorm、NormFinder和BestKeeper软件对这些内参基因的稳定性进行综合评价。结果表明,CytbEF-1α的表达稳定性较好,EF-1α+ Cytb组合的稳定性最佳,是玛氏骨条藻基因表达研究的理想内参基因,而其他基因的表达稳定性较差,不适合作为内参基因。本研究为玛氏骨条藻基因表达研究过程中内参基因的选择提供了方法学上的依据。
  • 图  1  吸光度值与玛氏骨条藻细胞密度的线性关系

    Fig.  1  The linear relationship between absorbance value and cell density of Skeletonema marinoi

    图  2  不同浓度Fe3+培养条件下玛氏骨条藻的生长曲线

    Fig.  2  Growth curves of Skeletonema marinoi in different concentration of Fe3+ conditions

    图  3  9个基因的PCR产物电泳结果

    M是指DL 500 DNA marker

    Fig.  3  Agarose gel electrophoresis of PCR product of seven reference genes

    M: DL 500 DNA marker

    图  4  不同浓度Fe3+处理组中各个内参基因的表达丰度

    Fig.  4  The expression abundance of each reference gene in the treatment group with different concentration of Fe3+ conditions

    图  5  GeNorm分析7个候选内参基因的表达稳定性指数

    Fig.  5  The average expression stability value (M) of seven candidate reference genes calculated by GeNorm

    图  6  内参基因的配对变异分析

    Fig.  6  Analysis pairwise variations of reference genes

    图  7  不同内参基因条件下PEPC1PEPC2基因的相对表达量分析

    A~E:1.5 μmol/L、3 μmol/L、6 μmol/L、12 μmol/L、24 μmol/L Fe3+浓度处理组

    Fig.  7  Analysis of relative expression of PEPC1 and PEPC2 genes in different reference genes conditions

    A-E are 1.5 μmol/L、3 μmol/L、6 μmol/L、12 μmol/L、24 μmol/L Fe3+ treatment, respectively

    表  1  qRT-PCR检测中9个基因的引物序列及其他相关信息

    Tab.  1  Primer sequences and other relevant information of nine genes in qRT-PCR

    基因名称 引物序列(5’-3’) AL/bp Tm/℃ AE/% R2
    Cytb (F)GGCTTTGAGGGGGATTCACA
    (R)AACGGGATTTTGTCACCAGT
    172 74.1 99.4 0.989
    EF1-α (F)GAGCGTGAGCGTGGAGTTAC
    (R)CGGCAGGCACAAGAAGAAG
    160 79.2 100.6 0.989
    GAPDH (F)TCGGTATTAGGAACCCAGAGG
    (R)TTGACGCCCACAACAAACAT
    178 77.9 99.0 0.988
    HPRT (F)TTTGCGTCAGGGCTTTTACA
    (R)CAGATTTGGGGTTGGCTTCT
    206 77 101.9 0.996
    UBC (F)CGACCCAGCAAGTCCAAAG
    (R)CCCATCGCTTCCCTCAAA
    152 78.8 101.2 0.984
    β-actin (F)TCGTCGCCGTTGACTTTG
    (R)ATTTCCTTGGACATACGCTCAC
    298 79.1 102.1 0.996
    β-tubulin (F)ATCAACTCAAACGCATCAACG
    (R)GTTATTACCCGCCCCACTCT
    176 81.3 99.2 0.998
    PEPC1 (F)AGCGTGCTGGGCTCAATAT
    (R)GCAGGATTACCTCCACGACC
    120 79.3 104.0 0.995
    PEPC2 (F)GTTTCGGCATTTGGGCTTAC
    (R)ATTTCGCCATTGTCGTTCC
    209 78.9 101.0 0.997
      注:AL为扩增长度;Tm为熔解温度;AE为引物的扩增效率;R2为确定系数。
    下载: 导出CSV

    表  2  NormFinder分析7个内参基因的表达稳定性指数

    Tab.  2  The average expression stability value (M) of seven reference genes calculated by NormFinder

    基因名称 M 稳定性排序
    Cytb 0.240 3
    EF1-α 0.084 1
    GAPDH 0.585 6
    HPRT 0.800 7
    UBC 0.249 4
    β-actin 0.409 5
    β-tubulin 0.094 2
    下载: 导出CSV

    表  3  BestKeeper分析7个内参基因的表达稳定性指数

    Tab.  3  The average expression stability value(M)of seven reference genes calculated by BestKeeper

    基因名称 Cytb EF-1α GAPDH HPRT UBC β-actin β-tubulin
    几何平均值 [Ct] 19.88 20.94 29.31 26.78 30.97 21.71 25.88
    数算平均值 [Ct] 19.89 20.95 29.33 26.81 30.98 21.71 25.89
    Min [Ct] 19.32 20.22 27.34 24.34 29.48 21.15 24.85
    Max [Ct] 20.53 21.40 30.43 27.98 31.99 22.09 26.62
    SDCt] 0.46 0.48 1.03 0.99 0.74 0.23 0.69
    CV [% Ct] 2.29 2.31 3.50 3.69 2.40 1.05 2.65
    r 0.88 0.97 0.87 0.75 0.93 0.72 0.97
    稳定性
    排序
    2 3 7 6 5 1 4
    下载: 导出CSV

    表  4  7个内参基因的表达稳定性的统计分析

    Tab.  4  Statistical analysis of the expression stability of seven reference genes

    评价方法 Cytb EF-1α GAPDH HPRT UBC β-actin β-tubulin
    GeNorm 1 1 6 7 5 4 3
    NormFinder 3 1 6 7 4 5 2
    BestKeeper 2 3 7 6 5 1 4
    Total 6 5 19 20 14 10 9
    下载: 导出CSV
  • [1] 程金凤, 高亚辉, 梁君荣, 等. 骨条藻的种类与基因多样性研究进展[J]. 自然科学进展, 2007, 17(5): 586−594. doi: 10.3321/j.issn:1002-008X.2007.05.005

    Chen Jinfeng, Gao Yahui, Liang Junrong, et al. Advances in the research on the species and gene diversity of Skeletonema spp.[J]. Progress in Natural Science, 2007, 17(5): 586−594. doi: 10.3321/j.issn:1002-008X.2007.05.005
    [2] 张晓东.厦门港骨条藻Skeletonema (Bacillariophyta) 物种多样性及周年变化的研究[D]. 青岛: 中国科学院海洋研究所, 2012.

    Diversity and annual variation of Skeletonema (Bacillariophyta) in Xiamen Harbor waters[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2012.
    [3] Huggett J, Dheda K, Bustin S, et al. Real-time RT-PCR normalisation; strategies and considerations[J]. Genes & Immunity, 2005, 6(4): 279−284.
    [4] Udvardi M K, Czechowski T, Scheible W R. Eleven golden rules of quantitative RT-PCR[J]. The Plant Cell, 2008, 20(7): 1736−1737. doi: 10.1105/tpc.108.061143
    [5] Vanguilder H D, Vrana K E, Freeman W M. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 2008, 44(5): 619−626. doi: 10.2144/000112776
    [6] Quackenbush J. Microarray data normalization and transformation[J]. Nature Genetics, 2002, 32(S1): 496−501.
    [7] Nolan T, Hands R E, Bustin S A. Quantification of mRNA using real-time RT-PCR[J]. Nature Protocols, 2006, 1(3): 1559−1582. doi: 10.1038/nprot.2006.236
    [8] Albershardt T C, Iritani B M, Ruddell A. Evaluation of reference genes for quantitative PCR analysis of mouse lymphocytes[J]. Journal of Immunological Methods, 2012, 384(1/2): 196−199.
    [9] Mohelnikova-Duchonova B, Oliverius M, Honsova E, et al. Evaluation of reference genes and normalization strategy for quantitative real-time PCR in human pancreatic carcinoma[J]. Disease Markers, 2012, 32(3): 203−210. doi: 10.1155/2012/582107
    [10] Luo Huolin, Luo Kecan, Luo Liping, et al. Evaluation of candidate reference genes for gene expression studies in Cymbidium kanran[J]. Scientia Horticulturae, 2014, 167: 43−48. doi: 10.1016/j.scienta.2013.12.030
    [11] Adelfi M G, Borra M, Sanges R, et al. Selection and validation of reference genes for qPCR analysis in the pennate diatoms Pseudo-nitzschia multistriata and P. arenysensis[J]. Journal of Experimental Marine Biology and Ecology, 2014, 451: 74−81. doi: 10.1016/j.jembe.2013.11.003
    [12] Cao Shaona, Zhang Xiaowen, Ye Naihao, et al. Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR[J]. Biochemical and Biophysical Research Communications, 2012, 424(1): 118−123. doi: 10.1016/j.bbrc.2012.06.086
    [13] Dong Meitao, Zhang Xiaowen, Chi Xiaoyuan, et al. The validity of a reference gene is highly dependent on the experimental conditions in green alga Ulva linza[J]. Current Genetics, 2012, 58(1): 13−20. doi: 10.1007/s00294-011-0361-3
    [14] Briat J F, Curie C, Gaymard F. Iron utilization and metabolism in plants[J]. Current Opinion in Plant Biology, 2007, 10(3): 276−282. doi: 10.1016/j.pbi.2007.04.003
    [15] Greene R M, Geider R J, Kolber Z, et al. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae[J]. Plant Physiology, 1992, 100(2): 565−575. doi: 10.1104/pp.100.2.565
    [16] Vassiliev I R, Kolber Z, Wyman K D, et al. Effects of iron limitation on photosystem Ⅱ. composition and light utilization in Dunaliella tertiolecta[J]. Plant Physiology, 1995, 109(3): 963−972. doi: 10.1104/pp.109.3.963
    [17] Ivanov A, Park Y I, Miskiewicz E, et al. Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942[J]. FEBS Letters, 2000, 485(2/3): 173−177.
    [18] Wan Minxi, Jin Xuejie, Xia Jinlan, et al. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana[J]. Applied Microbiology and Biotechnology, 2014, 98(22): 9473−9481. doi: 10.1007/s00253-014-6088-6
    [19] Whitney L P, Lins J J, Hughes M P, et al. Characterization of putative iron responsive genes as species-specific indicators of iron stress in Thalassiosiroid diatoms[J]. Frontiers in Microbiology, 2011, 2: 234.
    [20] Hernández-Torres A, Zapata-Morales A L, Alfaro A E O, et al. Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation[J]. World Journal of Microbiology and Biotechnology, 2016, 32(4): 55. doi: 10.1007/s11274-016-2008-5
    [21] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): research0034.1.
    [22] Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245−5250. doi: 10.1158/0008-5472.CAN-04-0496
    [23] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper–excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509−515. doi: 10.1023/B:BILE.0000019559.84305.47
    [24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [25] Wan Hongjian, Zhao Zhenguo, Qian Chuntao, et al. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber[J]. Analytical Biochemistry, 2010, 399(2): 257−261. doi: 10.1016/j.ab.2009.12.008
    [26] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.)[J]. BMC Plant Biology, 2010, 10: 71. doi: 10.1186/1471-2229-10-71
    [27] Mafra V, Kubo K S, Alves-Ferreira M, et al. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions[J]. PLoS One, 2012, 7(2): e31263. doi: 10.1371/journal.pone.0031263
    [28] Dheda K, Huggett J F, Chang J S, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization[J]. Analytical Biochemistry, 2005, 344(1): 141−143. doi: 10.1016/j.ab.2005.05.022
    [29] Zhu Jiang, He Fuhong, Song Shuhui, et al. How many human genes can be defined as housekeeping with current expression data?[J]. BMC Genomics, 2008, 9: 172. doi: 10.1186/1471-2164-9-172
    [30] Schmid H, Cohen C D, Henger A, et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies[J]. Kidney International, 2003, 64(1): 356−360. doi: 10.1046/j.1523-1755.2003.00074.x
    [31] 盖民昊, 陈堑, 胡祖庆, 等. 紫外诱导下麦长管蚜细胞色素b基因和SOD基因的克隆与序列分析[J]. 西北农林科技大学学报: 自然科学版, 2010, 38(11): 167−172.

    Gai Minhao, Chen Qian, Hu Zuqing, et al. Cloning and sequence analysis of cytochrome b gene and SOD gene in Sitobium avenae under the ultraviolet induction[J]. Journal of Northwest A&F University: Natural Science Edition, 2010, 38(11): 167−172.
    [32] 何闪英, 于志刚, 米铁柱. 增殖细胞核抗原基因表达量与中肋骨条藻生长的关系[J]. 水生生物学报, 2009, 33(1): 103−112.

    He Shanying, Yu Zhigang, Mi Tiezhu. Relationship between proliferating cell nuclear antigen gene expression amount and growth rate of Skeletonema costatum[J]. Acta Hydrobiologica Sinica, 2009, 33(1): 103−112.
    [33] 周冰, 曹诚, 刘传喧. 翻译延伸因子1A的研究进展[J]. 生物技术通讯, 2007, 18(2): 281−284. doi: 10.3969/j.issn.1009-0002.2007.02.032

    Zhou Bing, Cao Cheng, Liu Chuanxuan. Advances in research on translation elongation factor 1 alpha[J]. Letters in Biotechnology, 2007, 18(2): 281−284. doi: 10.3969/j.issn.1009-0002.2007.02.032
    [34] Han Xiaojiao, Lu Mengzhu, Chen Yicun, et al. Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development[J]. PLoS One, 2012, 7(8): e43084. doi: 10.1371/journal.pone.0043084
    [35] Martin R C, Hollenbeck V G, Dombrowski J E. Evaluation of reference genes for quantitative RT-PCR in Lolium perenne[J]. Crop Science, 2008, 48(5): 1881−1887. doi: 10.2135/cropsci2007.10.0597
    [36] Basa B, Solti Á, Sárvári É, et al. Housekeeping gene selection in poplar plants under Cd-stress: comparative study for real-time PCR normalisation[J]. Functional Plant Biology, 2009, 36(12): 1079−1087. doi: 10.1071/FP09073
    [37] 蔡文凯, 胡金璐, 李双双, 等. 辐射条件下微藻基因表达内参基因的选择[J]. 空间科学学报, 2013, 33(6): 651−658. doi: 10.11728/cjss2013.06.651

    Cai Wenkai, Hu Jinlu, Li Shuangshuang, et al. Selection of suitable internal control genes in microalgae under radiation condition[J]. Chinese Journal of Space Science, 2013, 33(6): 651−658. doi: 10.11728/cjss2013.06.651
    [38] Hong S Y, Seo P J, Yang M S, et al. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant Biology, 2008, 8: 112. doi: 10.1186/1471-2229-8-112
    [39] 苏晓娟, 樊保国, 袁丽钗, 等. 实时荧光定量PCR分析中毛果杨内参基因的筛选和验证[J]. 植物学报, 2013, 48(5): 507−518.

    Su Xiaojuan, Fan Baoguo, Yuan Lichai, et al. Selection and validation of reference genes for quantitative RT-PCR analysis of gene expression in Populus trichocarpa[J]. Bulletin of Botany, 2013, 48(5): 507−518.
    [40] 吴文凯, 刘成前, 周志刚, 等. 用于莱茵衣藻荧光定量PCR分析的内参基因选择[J]. 植物生理学通讯, 2009, 45(7): 667−672.

    Wu Wenkai, Liu Chengqian, Zhou Zhigang, et al. The selection of reference genes in Chlamydomonas reinhardtii P. A. dangeard by real-time quantitative PCR[J]. Plant Physiology Communications, 2009, 45(7): 667−672.
    [41] Shim J, Shim E, Kim G H, et al. Keeping house: evaluation of housekeeping genes for real-time PCR in the red alga, Bostrychia moritziana (Florideophyceae)[J]. Algae, 2016, 31(2): 167−174. doi: 10.4490/algae.2016.31.5.25
    [42] Liu Chenlin, Wu Guangting, Huang Xiaohang, et al. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation[J]. Extremophiles, 2012, 16(3): 419−425. doi: 10.1007/s00792-012-0441-4
    [43] Wu Shuang, Zhou Jiannan, Cao Xupeng, et al. Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition[J]. Journal of Ocean University of China, 2016, 15(1): 137−144. doi: 10.1007/s11802-016-2847-6
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  33
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-04-23
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回