留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮游软体动物长角螺属(Clio)种类的分类学和谱系地理学

高阳 李海涛 姜重臣 陈志云 李宏俊

高阳,李海涛,姜重臣,等. 浮游软体动物长角螺属( Clio)种类的分类学和谱系地理学[J]. 海洋学报,2020,42(2):96–105,doi:10.3969/j.issn.0253−4193.2020.02.010
引用本文: 高阳,李海涛,姜重臣,等. 浮游软体动物长角螺属( Clio )种类的分类学和谱系地理学[J]. 海洋学报,2020,42(2):96–105,doi:10.3969/j.issn. 0253−4193.2020.02.010
Gao Yang,Li Haitao,Jiang Chongchen, et al. Taxonomy and phylogeography of Clio species based on mtCOI and 18S rRNA genes[J]. Haiyang Xuebao,2020, 42(2):96–105,doi:10.3969/j.issn.0253−4193.2020.02.010
Citation: Gao Yang,Li Haitao,Jiang Chongchen, et al. Taxonomy and phylogeography of Clio species based on mtCOI and 18S rRNA genes[J]. Haiyang Xuebao,2020, 42(2):96–105,doi:10.3969/j.issn.0253−4193.2020.02.010

浮游软体动物长角螺属(Clio)种类的分类学和谱系地理学

doi: 10.3969/j.issn.0253-4193.2020.02.010
基金项目: 国家自然科学基金项目(41606191); 国家重点研发计划(2016YFC1400606-3)。
详细信息
    作者简介:

    高阳(1978—),男,广东省揭阳市人,工程师,从事海洋生物多样性监测和评价工作。E-mail: gaodiqi@163.com

    通讯作者:

    李海涛(1981—),男,高级工程师,从事贝类和浮游动物分类学研究。E-mail: haitaoli1981@126.com

  • 中图分类号: Q959.1; Q958.2

Taxonomy and phylogeography of Clio species based on mtCOI and 18S rRNA genes

  • 摘要: 许多终生浮游软体动物接近全球分布或呈环球分布,是海洋酸化和谱系地理学研究的良好材料。本文以西北太平洋和北印度洋的长角螺属(Clio)种类为材料,通过测定其线粒体COI基因(mtCOI,55条)和核18S rRNA基因(9条)序列,结合数据库中已有的序列,对该属进行了分类学和谱系地理学研究。结果表明,矛头长角螺(C. pyramidata)和尖棘长角螺(C. cuspidata)在mtCOI基因系统树中均形成4个明显分化的谱系分支,分别为支系A–D和支系E–H。矛头长角螺的支系A为全球分布,中国海及邻近海域可能仅有支系A的存在,支系B、C和D分布于特定海域。尖棘长角螺也存在明显的谱系地理结构,西北太平洋北赤道流南北两侧存在2个不同的支系,分布于吕宋海峡的支系E为一新的谱系分支。各支系内mtCOI基因的K2P遗传距离在0~0.026之间,支系间的遗传距离在0.031~0.089之间。膨凸长角螺(C. convexa)和曲形长角螺(C. recurva)没有明显的地理遗传分化。18S rRNA基因支持支系D为独立种,但不支持其他支系的划分。矛头长角螺和尖棘长角螺内部可能存在隐存多样性。洋流可能会成为物种扩布和基因交流的障碍。
  • 图  1  长角螺属种类的贝壳形态(比例尺=5 mm)

    a-c. 矛头长角螺(支系A); d-e. 尖棘长角螺(支系E); f. 尖棘长角螺(支系F); g. 膨凸长角螺; h. 矛头长角螺(幼体, 支系C)

    Fig.  1  Shell morphology of Clio species (scale bars=5 mm)

    a-c. C. pyramidata, Lineage A); d-e. C. cuspidate (Lineage E); f. C. cuspidata (Lineage F); g. C. convexa; h. C. pyramidata (juvenile, Lineage C)

    图  2  基于mtCOI基因构建的长角螺属贝叶斯系统发育树

    节点处数值分别为后验概率和自展支持率,仅给出大于70%的数值

    Fig.  2  Bayesian inference phylogenetic tree of genus Clio based on mtCOI gene sequences

    Posterior probabilities/bootstrap values over 70% are shown for each node

    图  3  基于18S rRNA基因构建的长角螺属贝叶斯系统发育树

    节点处数值分别为后验概率和自展支持率, 仅给出大于70%的数值; 括号中的大写字母对应于mtCOI的支系编号

    Fig.  3  Bayesian inference phylogenetic tree of genus Clio based on nuclear18S rRNA gene sequences

    Posterior probabilities/bootstrap values over 70% are shown for each node; capital letters in brackets are corresponding to mtCOI lineages

    图  4  矛头长角螺4个mtCOI支系的地理分布

    Un表示不知具体经纬度但知道大致取样海域;饼状图中数字表示采样点的测序标本数量

    Fig.  4  Geographical distributions of four mtCOI lineages for C. pyramidata

    Un indicates coordinates are unknown but sampling areas are available; numbers in pie charts indicate the sequenced number of specimens

    图  5  尖棘长角螺4个mtCOI支系的地理分布

    Un表示不知具体经纬度但知道大致取样海域;饼状图中数字表示采样点的测序标本数量

    Fig.  5  Geographical distributions of four mtCOI lineages for C. cuspidata

    Un indicates coordinate is unknown but sampling area is available; numbers in pie charts indicate the sequenced number of specimens

    表  1  测序标本的采样信息

    Tab.  1  Collection information for specimens analyzed in this study

    种类标本编号标本数量经纬度采样时间GenBank登录号
    mtCOI18S rRNA
    C. pyramidataMT1119.000°N, 122.667°E2016−06−01MK749610
    C. pyramidataMT2120.000°N, 122.500°E2017−09−11MK749611MK749665
    C. pyramidataMT3~MT272520.000°N, 121.250°E2018−05−07MK749612~36MK749666
    C. pyramidataMT28~MT381121.500°N, 125.000°E2016−05−29MK749637~47
    C. pyramidataMT39120.260°N, 116.576°E2016−06−04MK749648
    C. pyramidataMT4019.470°N, 112.870°E2017−07−02MK749649
    C. pyramidataMT4110.929°N, 146.824°E2018−12−07MK749650
    C. pyramidataMT4214.507°N, 80.044°E2018−04−04MK749651MK749667
    C. cuspidataJJ1~JJ6620.000°N, 121.250°E2016−06−02/2018−05−07MK749652~57MK749668~69
    C. cuspidataJJ713.210°N, 147.945°E2019−01−02MK749658MK749670
    C. convexaPT1110.000°N, 87.501°E2018−04−29MK749659MK749671
    C. convexaPT210.934°N, 149.658°E2018−12−13MK749660MK749672
    C. convexaPT3~PT643.768°N, 146.820°E2019−01−01MK749661~64MK749673
    下载: 导出CSV

    表  2  基于mtCOI基因的长角螺属4个形态种的K2P遗传距离

    Tab.  2  The K2P distances of four Clio morphospecies based on mtCOI sequences

    形态种C. pyramidataC. convexaC. recurvaC. cuspidata
    C. pyramidata0~0.089(0.025)
    C. convexa0.070~0.113(0.089)0.002~0.019(0.008)
    C. recurva0.153~0.185(0.170)0.131~0.148(0.139)0~0.005(0.002)
    C. cuspidata0.133~0.183(0.156)0.125~0.168(0.141)0.083~0.110(0.097)0~0.079(0.049)
      注:括号中的数值为平均值
    下载: 导出CSV
  • [1] Bednaršek N, Možina J, Vučković M, et al. Global distribution of pteropods representing carbonate functional type biomass[J]. Earth System Science Data Discussions, 2012, 5(1): 317−350. doi: 10.5194/essdd-5-317-2012
    [2] Hunt B P V, Pakhomov E A, Hosie G W, et al. Pteropods in southern ocean ecosystems[J]. Progress in Oceanography, 2008, 78(3): 193−221. doi: 10.1016/j.pocean.2008.06.001
    [3] Flores H, van Franeker J A, Cisewski B, et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(19/20): 1948−1961.
    [4] Howard W R, Roberts D, Moy A D, et al. Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic zone[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(21/22): 2293−2300.
    [5] Bednaršek N, Harvey C J, Kaplan I C, et al. Pteropods on the edge: cumulative effects of ocean acidification, warming, and deoxygenation[J]. Progress in Oceanography, 2016, 145: 1−24. doi: 10.1016/j.pocean.2016.04.002
    [6] Fabry V J, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science, 2008, 65(3): 414−432. doi: 10.1093/icesjms/fsn048
    [7] Gardner J, Manno C, Bakker D C E, et al. Southern Ocean pteropods at risk from ocean warming and acidification[J]. Marine Biology, 2018, 165(1): 8. doi: 10.1007/s00227-017-3261-3
    [8] 张福绥. 中国近海的浮游软体动物. I. 翼足类、异足类及海蜗牛类的分类研究[J]. 海洋科学集刊, 1964(5): 125−226.

    Zhang Fusui. The pelagic molluscs off China coast Ⅰ. A systemic study of Pteropoda (Opisthobranchia), Heteropoda (Prosobranchia) and Janthinidae (Ptenoglossa, Prosobranchia)[J]. Studia Marina Sinica, 1964(5): 125−226.
    [9] Robertson R. Dispersal and wastage of larval Philippia krebsii (Gastropoda: Architectonicidae) in the north Atlantic[J]. Proceedings of the Academy of Natural Sciences of Philadelphia, 1964, 116: 1−27.
    [10] Bieler R. Architectonicidae of the Indo-Pacific (Mollusca, Gastropoda)[M].Stuttgart: Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 1993.
    [11] Bontes B, van der Spoel S. Variation in Diacria trispinosa group, new interpretation of colour patterns and description of D. rubecula n. sp. (Pteropoda)[J]. Bulletin Zoölogisch Museum, Universiteit van Amsterdam, 1998, 16(11): 77−84.
    [12] Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA Barcodes[J]. Proceedings of the Royal Society B: Biological Sciences, 2003, 270(1512): 313−321. doi: 10.1098/rspb.2002.2218
    [13] Jennings R M, Bucklin A, Ossenbrügger H, et al. Species diversity of planktonic gastropods (Pteropoda and Heteropoda) from six ocean regions based on DNA barcode analysis[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2010, 57(24/26): 2199−2210.
    [14] Maas A E, Blanco-Bercial L, Lawson G L. Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding[J]. PLoS One, 2013, 8(1): e53889. doi: 10.1371/journal.pone.0053889
    [15] Gasca R, Janssen A W. Taxonomic review, molecular data and key to the species of Creseidae from the Atlantic Ocean[J]. Journal of Molluscan Studies, 2014, 80(1): 35−42. doi: 10.1093/mollus/eyt038
    [16] Wall-Palmer D, Burridge A K, Goetze E, et al. Biogeography and genetic diversity of the atlantid heteropods[J]. Progress in Oceanography, 2018, 160: 1−25. doi: 10.1016/j.pocean.2017.11.004
    [17] Burridge A K, Goetze E, Raes N, et al. Global biogeography and evolution of Cuvierina pteropods[J]. BMC Evolutionary Biology, 2015, 15: 39. doi: 10.1186/s12862-015-0310-8
    [18] 李海涛, 何薇, 周鹏, 等. 伶鼬榧螺(Oliva mustelina)的分子鉴定及其形态变异[J]. 海洋学报, 2015, 37(4): 117−123.

    Li Haitao, He Wei, Zhou Peng, et al. Molecular identification of Oliva mustelina and its morphological variation[J]. Haiyang Xuebao, 2015, 37(4): 117−123.
    [19] Folmer O, Black M, Heah W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994, 3(5): 294−299.
    [20] Vonnemann V, Schrödl M, Klussmann-Kolb A, et al. Reconstruction of the phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18s and 28s rRNA gene sequences[J]. Journal of Molluscan Studies, 2005, 71(2): 113−125. doi: 10.1093/mollus/eyi014
    [21] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539−452. doi: 10.1093/sysbio/sys029
    [22] Darriba D, Taboada G L, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing[J]. Nature Methods, 2012, 9(8): 772.
    [23] Fujisawa T, Barraclough T G. Delimiting species using single-locus data and the generalized Mixed Yule coalescent approach: a revised method and evaluation on simulated data sets[J]. Systematic Biology, 2013, 62(5): 707−724. doi: 10.1093/sysbio/syt033
    [24] Puillandre N, Lambert A, Brouillet S, et al. ABGD, automatic barcode gap discovery for primary species delimitation[J]. Molecular Ecology, 2012, 21(8): 1864−1877. doi: 10.1111/j.1365-294X.2011.05239.x
    [25] Drummond A J, Rambaut A. BEAST: bayesian evolutionary analysis by sampling trees[J]. BMC Evolutionary Biology, 2007, 7: 214. doi: 10.1186/1471-2148-7-214
    [26] van der Spoel S, Dadon J R. Pteropoda[M]//Boltovskoy D. South Atlantic zooplankton. Leiden, The Netherlands: Backhuys, 1999: 649−706.
    [27] Palumbi S R. Genetic divergence, reproductive isolation, and marine speciation[J]. Annual Review of Ecology and Systematics, 1994, 25: 547−572. doi: 10.1146/annurev.es.25.110194.002555
    [28] Chen Gang, Hare M P. Cryptic diversity and comparative phylogeography of the estuarine copepod Acartia tonsa on the US Atlantic coast[J]. Molecular Ecology, 2011, 20(11): 2425−2441. doi: 10.1111/j.1365-294X.2011.05079.x
    [29] Peijnenburg K T C A, Goetze E. High evolutionary potential of marine zooplankton[J]. Ecology and Evolution, 2013, 3(8): 2765−2781. doi: 10.1002/ece3.644
    [30] Goetze E, Hüdepohl P T, Chang C, et al. Ecological dispersal barrier across the equatorial Atlantic in a migratory planktonic copepod[J]. Progress in Oceanography, 2017, 158: 203−212. doi: 10.1016/j.pocean.2016.07.001
    [31] Toole J M, Millard R C, Wang Z, et al. Observations of the pacific north equatorial current bifurcation at the Philippine coast[J]. Journal of Physical Oceanography, 1990, 20(2): 307−318. doi: 10.1175/1520-0485(1990)020<0307:OOTPNE>2.0.CO;2
    [32] Hunt B, Strugnell J, Bednarsek N, et al. Poles apart: the “bipolar” pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans[J]. PLoS One, 2010, 5(3): e9835. doi: 10.1371/journal.pone.0009835
    [33] Hebert P D N, Stoeckle M Y, Zemlak T S, et al. Identification of birds through DNA barcodes[J]. PLoS Biology, 2004, 2(10): e312. doi: 10.1371/journal.pbio.0020312
    [34] 李琪, 刘君, 孔令锋. 种的概念及种的界定与鉴定[J]. 中国海洋大学学报, 2014, 44(10): 57−64.

    Li Qi, Liu Jun, Kong Lingfeng. Species concept, species delimitation and species identification[J]. Periodical of Ocean University of China, 2014, 44(10): 57−64.
    [35] 林森杰, 王路, 郑连明, 等. 海洋生物DNA条形码研究现状与展望[J]. 海洋学报, 2014, 36(12): 1−17.

    Lin Senjie, Wang Lu, Zheng Lianming, et al. Current status and future prospect of DNA barcoding in marine biology[J]. Haiyang Xuebao, 2014, 36(12): 1−17.
    [36] Avise J C. Phylogeography: The History and Formation of Species[M]. Cambridge (Massachusetts): Harvard University Press, 2000: 447.
    [37] Avise J C. Molecular markers, natural history and evolution[M]. 2nd ed. Sunderland (Massachusetts): Sinauer Associates, 2004: 541.
    [38] Wiemers M, Fiedler K. Does the DNA barcoding gap exist?-a case study in blue butterflies (Lepidoptera: Lycaenidae)[J]. Frontiers in Zoology, 2007, 4: 8. doi: 10.1186/1742-9994-4-8
    [39] Ortman B D, Bucklin A, Pagès F, et al. DNA barcoding the Medusozoa using mtCOI[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(24/26): 2418−2156.
    [40] 刘青青, 董志军. 基于线粒体COI基因分析钩手水母的群体遗传结构[J]. 生物多样性, 2018, 26(11): 1204−1211. doi: 10.17520/biods.2018044

    Liu Qingqing, Dong Zhijun. Population genetic structure of Gonionemus vertens based on the mitochondrial COI sequence[J]. Biodiversity Science, 2018, 26(11): 1204−1211. doi: 10.17520/biods.2018044
    [41] Bucklin A, Wiebe P H, Smolenack S B, et al. DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea)[J]. Journal of Plankton Research, 2007, 29(6): 483−493. doi: 10.1093/plankt/fbm031
    [42] Durbin A, Hebert P D N, Cristescu M E A. Comparative phylogeography of marine cladocerans[J]. Marine Biology, 2008, 155(1): 1−10. doi: 10.1007/s00227-008-0996-x
    [43] Radulovici A E, Sainte-marie B, Dufresne F. DNA barcoding of marine crustaceans from the estuary and gulf of St Lawrence: a regional-scale approach[J]. Molecular Ecology Resources, 2009, 9(S1): 181−187.
    [44] Marlétaz F, Le Parco Y, Liu Shenglin, et al. Extreme mitogenomic variation in natural populations of chaetognaths[J]. Genome Biology and Evolution, 2017, 9(6): 1374−1384. doi: 10.1093/gbe/evx090
    [45] Hubert N, Meyer C P, Bruggemann H J, et al. Cryptic diversity in indo-pacific coral-reef fishes revealed by DNA-barcoding provides new support to the Centre-of-overlap hypothesis[J]. PLoS One, 2012, 7(3): e28987. doi: 10.1371/journal.pone.0028987
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  22
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2019-06-13
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回