Distribution characteristics of the benthic macroinvertebrates and corresponding influencing factors in Jiuduansha shoals
-
摘要: 大型底栖动物是盐沼湿地中最重要的生物类群之一。本文以长江口九段沙湿地为研究区域,于2016年10月在江亚南沙、上沙和下沙的不同区域沿高程梯度设置固定采样站点,对大型底栖动物、沉积物和植物进行取样调研,分析研究了大型底栖动物的分布特征及其影响因子。结果表明:(1)大型底栖动物沿高程梯度的分布具有一定规律性:低潮带环节动物的多度和生物量均最高,中潮带软体动物的物种数最多,高潮带甲壳动物的多度和生物量均最高;(2)不同区域由于环境条件的差异,大型底栖动物沿高程梯度的分布特征也有明显差异;(3)对大型底栖动物分布特征有显著影响的生境因子主要包括沉积物中值粒径、氧化还原电位和植株密度等,不同区域、不同生境中对大型底栖动物的分布特征有显著影响的生境因子也有一定差异;(4)互花米草(Spartina alterniflora)的入侵改变了生境条件,进而对大型底栖动物的分布特征产生影响。在今后的研究中,要充分考虑不同区域、不同高程之间环境条件的差异,进一步探讨盐沼湿地大型底栖动物的分布特征及影响因子的综合作用。Abstract: The benthic macroinvertebrate is one of the most important biological groups in salt marsh ecosystem. The Jiuduansha shoals of the Changjiang Estuary were selected as the study areas, and fixed sampling sites were set along the elevation gradient in the different areas, and the benthic macroinvertebrates, sediments and plants were sampled for the analysis on the distribution characteristics of the benthic macroinvertebrates and corresponding influencing factors. The results showed that: (1) The distribution of the benthic macroinvertebrates along elevation gradient has certain regularity: The abundance and biomass of annelids in the low tidal zone appeared to be the highest, the species number of mollusks in the middle tidal zone was the highest, and the abundance and biomass of crustaceans in the high tidal zone were the highest. (2) Due to the differences of environmental conditions, the distribution characteristics of the benthic macroinvertebrates along the elevation gradient were also significantly different among the different areas. (3) Habitat factors that have significant effects on the distribution characteristics of the benthic macroinvertebrates included the median grain size, the redox potential of sediments, the density of plants, etc, and there were some differences among the different areas and habitats. (4) The invasion of Spartina alterniflora changed the habitat conditions and thus affected the distribution characteristics of the benthic macroinvertebrates. In future studies, we should fully consider the differences of environmental conditions between the different areas and elevations to explore the distribution characteristics of the benthic macroinvertebrates and the comprehensive effects of the influencing factors.
-
Key words:
- salt marsh /
- benthic macroinvertebrates /
- elevation /
- distribution characteristics /
- influencing factors
-
图 2 大型底栖动物的密度(A)和生物量(B)(平均值±标准误)
上方标注不同小写字母的柱状图表示同一断面不同生境之间存在显著差异(P<0.05),括号中不同的小写字母表示不同断面同一生境类型之间存在显著差异(P<0.05)
Fig. 2 Density (A) and biomass (B) of the benthic macroinvertebrates (mean±SE)
The histograms marked with different letters above indicate the significant differences between different habitats in the same section (P<0.05), and the different letters in brackets indicate the significant differences between the same habitat in different sections (P<0.05).
表 1 九段沙大型底栖动物群落组成特征
Tab. 1 Community composition of the benthic macroinvertebrates in Jiuduansha
种类 J1断面 J2断面 J3断面 J4断面 光滩 海三棱藨草带 芦苇带 光滩 海三棱藨草带 芦苇带 光滩 互花米草带 光滩 海三棱藨草带 互花米草带 %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI %N %B IRI 软体动物Mollusca 河蚬
Corbicula fluminea91.40 99.58 190.98 82.72 99.28 182.00 0.00 0.00 0.00 11.11 36.01 23.56 97.37 98.56 156.74 0.00 0.00 0.00 2.50 9.33 4.73 0.00 0.00 0.00 0.00 0.00 0.00 2.60 3.32 3.55 0.00 0.00 0.00 彩虹明樱蛤
Moerella iridescens0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 1.09 0.14 0.00 0.00 0.00 0.00 0.00 0.00 1.43 1.97 1.36 0.00 0.00 0.00 黑龙江河篮蛤
Potamocorbula amurensis0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.56 35.05 12.18 2.63 1.44 0.41 0.00 0.00 0.00 66.43 84.30 150.72 0.00 0.00 0.00 84.26 85.91 170.17 95.96 94.71 171.61 0.00 0.00 0.00 光滑狭口螺
Stenothyra glabra0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.58 0.15 0.00 0.00 0.00 0.00 0.00 0.00 堇拟沼螺
Assiminea violacea0.00 0.00 0.00 1.23 0.28 0.15 52.00 51.03 41.21 79.17 28.12 64.37 0.00 0.00 0.00 0.00 0.00 0.00 17.50 3.01 16.41 94.96 80.52 157.93 2.78 2.57 1.07 0.00 0.00 0.00 90.23 85.00 175.23 绯拟沼螺
A. latericea0.00 0.00 0.00 0.00 0.00 0.00 4.00 4.30 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 微小螺
Elachisina sp.0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17 0.81 0.50 0.00 0.00 0.00 0.00 0.00 0.00 10.71 1.59 8.61 0.00 0.00 0.00 6.48 3.79 2.06 0.00 0.00 0.00 0.00 0.00 0.00 中华拟蟹守螺
Cerithidea sinensis0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.00 82.31 178.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 环节动物Annelida 背蚓虫
Notomastus latericeus4.30 0.19 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.22 0.06 0.00 0.00 0.00 0.93 0.62 0.15 0.00 0.00 0.00 0.00 0.00 0.00 圆锯齿吻沙蚕
Dentinephtys glabra0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43 0.09 0.61 0.00 0.00 0.00 3.70 0.98 1.40 0.00 0.00 0.00 0.38 0.32 0.07 双齿围沙蚕
Nereis succinea3.23 0.24 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 甲壳动物Crustacea 短身大眼蟹
Macrophthalmus abbreviatus0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 5.54 0.65 0.00 0.00 0.00 0.00 0.00 0.00 无齿螳臂相手蟹
Chiromantes dehaani1.08 0.00 0.11 16.05 0.43 11.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 17.69 4.34 0.71 0.37 0.22 5.04 19.48 17.17 0.00 0.00 0.00 0.00 0.00 0.00 9.40 14.68 16.86 红螯螳臂相手蟹
C. haematocheir0.00 0.00 0.00 0.00 0.00 0.00 44.00 44.67 62.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 表 2 不同站点植株密度、生物量和高度(平均值±标准误)
Tab. 2 Density, biomass and height of the plants in the different sampling sites(mean ± SE)
站点 密度/株·m−2 地上生物量 (干重)/g·m−2 株高/cm J1Sm 309.20±18.30 a 54.68±5.64 a 49.59±1.25 a J2Sm 281.60±23.22 a 41.99±4.27 a 42.62±1.03 a J4Sm 406.40±28.43 b 52.70±6.05 a 34.18±1.08 a J1Pa 64.40±6.18 (a) 861.70±111.10 (ac) 189.56±6.96 (a) J2Pa 94.80±7.46 (b) 437.40±60.68 (a) 131.35±5.67 (a) J3Sa 75.20±7.37 (b) 1300.19±70.39 (b) 179.32±15.97 (a) J4Sa 85.60±8.73 (b) 883.83±94.46 (c) 160.41±4.63 (a) 注:表中前3行同一列标注不同字母表示不同站点海三棱藨草相互之间存在显著差异(P<0.05),后4行同一列括号中标注不同字母表示不同站点芦苇/互花米草之间存在显著差异(P<0.05)。 表 3 大型底栖动物与生境因子的非线性回归分析
Tab. 3 Nonlinear regression analysis among the benthic macroinvertebrates and habitat factors
断面 多度 光滩 海三棱藨草带 芦苇/互花米草带 筛选因子组合 相关性系数 P 筛选因子组合 相关性系数 P 筛选因子组合 相关性系数 P J1 1,2,3,8,20 0.826 0.025 3,4,8,10,24,25 0.855 0.071 36 0.336 0.019 J2 4,6,10,25 0.733 0.008 5,11,12,15,16,
25,27,28,360.711 0.200 6 0.809 0.200 J3 9,28 0.127 0.017 22,29 0.879 0.143 J4 3,8 0.309 0.017 3,12 0.363 0.264 1,4,5,12,13,14,
16,25,280.624 0.205 断面 生物量 光滩 海三棱藨草带 芦苇/互花米草带 筛选因子组合 相关性系数 P 筛选因子组合 相关性系数 P 筛选因子组合 相关性系数 P J1 2,5 0.917 0.889 3,11,14,25 0.818 0.146 18,22,30 0.379 0.051 J2 6 0.806 0.115 5,11,12,15,16,
25,27,28,360.711 0.200 3,4,8 0.938 0.049 J3 1,2,25,29,32 0.055 0.703 11,34,36 0.03 0.346 J4 2,3,5,9,12,
14,15,170.297 0.625 3,12 0.491 0.200 25,33 0.624 0.49 注:生境因子,1:沉积物温度;2:沉积物pH;3:沉积物氧化还原电位;4:沉积物电导率;5:沉积物孔隙水盐度;6:沉积物中值粒径(0~5 cm);7:沉积物中值粒径(5~10 cm);8:沉积物中值粒径(10~15 cm);9:沉积物中值粒径(15~20 cm);10:沉积物中值粒径(20~25 cm);11:沉积物中值粒径(25~30 cm);12:沉积物总碳含量(0~5 cm);13:沉积物总碳含量(5~10 cm);14:沉积物总碳含量(10~15 cm);15:沉积物总碳含量(15~20 cm);16:沉积物总碳含量(20~25 cm);17:沉积物总碳含量(25~30 cm);18:沉积物总氮含量(0~5 cm);19:沉积物总氮含量(5~10 cm);20:沉积物总氮含量(10~15 cm);21:沉积物总氮含量(15~20 cm);22:沉积物总氮含量(20~25 cm);23:沉积物总氮含量(25~30 cm);24:沉积物含水率(0~5 cm);25:沉积物含水率(5~10 cm);26:沉积物含水率(10~15 cm);27:沉积物含水率(15~20 cm);28:沉积物含水率(20~25 cm);29:沉积物含水率(25~30 cm);30:沉积物容积密度(0~5 cm);31:沉积物容积密度(5~10 cm);32:沉积物容积密度(10~15 cm);33:沉积物容积密度(15~20 cm);34:沉积物容积密度(20~25 cm);35:沉积物容积密度(25~30 cm);36:植株密度;37:植株高度;38:植物地上部分生物量。 -
[1] Więski K, Guo H Y, Craft C B, et al. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia Coast[J]. Estuaries and Coasts, 2010, 33(1): 161−169. doi: 10.1007/s12237-009-9230-4 [2] Hampel H, Cattrijsse A, Elliott M. Feeding habits of young predatory fishes in marsh creeks situated along the salinity gradient of the Schelde estuary, Belgium and The Netherlands[J]. Helgoland Marine Research, 2005, 59(2): 151−162. doi: 10.1007/s10152-004-0214-2 [3] 陈振楼, 刘杰, 许世远, 等. 大型底栖动物对长江口潮滩沉积物-水界面无机氮交换的影响[J]. 环境科学, 2005, 26(6): 43−50. doi: 10.3321/j.issn:0250-3301.2005.06.009Chen Zhenlou, Liu Jie, Xu Shiyuan, et al. Impact of macrofaunal activities on the DIN exchange at the sediment-water interface along the tidal flat of Yangtze River Estuary[J]. Environmental Science, 2005, 26(6): 43−50. doi: 10.3321/j.issn:0250-3301.2005.06.009 [4] Beukema J J. Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1976, 10(2): 236−261. doi: 10.1016/0077-7579(76)90017-X [5] Kneib R T. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: Causes and questions[J]. Estuaries, 1984, 7(4): 392−412. doi: 10.2307/1351621 [6] Ritter C, Montagna P A, Applebaum S. Short-term succession dynamics of macrobenthos in a salinity-stressed estuary[J]. Journal of Experimental Marine Biology and Ecology, 2005, 323(1): 57−69. doi: 10.1016/j.jembe.2005.02.018 [7] Tomiyama T, Komizunai N, Shirase T, et al. Spatial intertidal distribution of bivalves and polychaetes in relation to environmental conditions in the Natori River estuary, Japan[J]. Estuarine, Coastal and Shelf Science, 2008, 80(2): 243−250. doi: 10.1016/j.ecss.2008.08.003 [8] Peterson C H, Black R. Resource depletion by active suspension feeders on tidal flats: Influence of local density and tidal elevation[J]. Limnology and Oceanography, 1987, 32(1): 143−166. doi: 10.4319/lo.1987.32.1.0143 [9] Engle V D, Summers J K. Latitudinal gradients in benthic community composition in Western Atlantic estuaries[J]. Journal of Biogeography, 1999, 26(5): 1007−1023. doi: 10.1046/j.1365-2699.1999.00341.x [10] Salgado J P, Cabral H N, Costa M J. Spatial and temporal distribution patterns of the macrozoobenthos assemblage in the salt marshes of Tejo estuary (Portugal)[J]. Hydrobiologia, 2007, 587(1): 225−239. doi: 10.1007/s10750-007-0685-7 [11] 安传光. 九段沙潮间带大型底栖动物研究[D]. 上海: 华东师范大学, 2007.An Chuan’guang. Studies on the macrobenthos in the Jiuduansha wetland tidal zone[D]. Shanghai: East China Normal University, 2007. [12] 徐晓军, 由文辉, 张锦平, 等. 崇明东滩底栖动物群落与潮滩高程的关系[J]. 江苏环境科技, 2008, 21(3): 30−32, 35.Xu Xiaojun, You Wenhui, Zhang Jinping, et al. Relationship between macrobenthos community and tidal flat elevation in Chongming Dongtan[J]. Jiangsu Environmental Science and Technology, 2008, 21(3): 30−32, 35. [13] 安传光, 赵云龙, 林凌, 等. 长江口九段沙潮间带大型底栖动物季节分布特征的初步研究[J]. 水产学报, 2007, 31(S1): 52−58.An Chuan’guang, Zhao Yunlong, Lin Ling, et al. Primary investigation of seasonal characters of macrobenthic communities distribution in tidal flats of Jiuduansha wetland of Yangtze River estuary[J]. Journal of Fisheries of China, 2007, 31(S1): 52−58. [14] 周晓, 葛振鸣, 施文彧, 等. 长江口新生湿地大型底栖动物群落时空变化格局[J]. 生态学杂志, 2007, 26(3): 372−377. doi: 10.3321/j.issn:1000-4890.2007.03.015Zhou Xiao, Ge Zhenming, Shi Wenyu, et al. Temporal and spatial fluctuation of macrobenthos community in a newly established wetland in Yangtze River Estuary[J]. Chinese Journal of Ecology, 2007, 26(3): 372−377. doi: 10.3321/j.issn:1000-4890.2007.03.015 [15] 全为民, 赵云龙, 朱江兴, 等. 上海市潮滩湿地大型底栖动物的空间分布格局[J]. 生态学报, 2008, 28(10): 5179−5187. doi: 10.3321/j.issn:1000-0933.2008.10.067Quan Weimin, Zhao Yunlong, Zhu Jiangxing, et al. The spatial pattern of macrozoobenthic communities in the tidal wetlands of Shanghai City[J]. Acta Ecologica Sinica, 2008, 28(10): 5179−5187. doi: 10.3321/j.issn:1000-0933.2008.10.067 [16] 陈秀芝, 郭水良, 朱莉莉, 等. 长江口九段沙不同等级潮沟附近主要植物种群的分布格局[J]. 湿地科学, 2011, 9(1): 52−60.Chen Xiuzhi, Guo Shuiliang, Zhu Lili, et al. Distribution pattern of main plant populations around tidal creeks in different grades in the Jiuduansha shoals in the mouth of Yangtze River[J]. Wetland Science, 2011, 9(1): 52−60. [17] 童春富. 长江河口潮间带盐沼植被分布区及邻近光滩鱼类组成特征[J]. 生态学报, 2012, 32(20): 6501−6510.Tong Chunfu. Characteristics of the fish assemblages in the intertidal salt marsh zone and adjacent mudflat in the Yangtze Estuary[J]. Acta Ecologica Sinica, 2012, 32(20): 6501−6510. [18] Wang J Q, Tang L, Zhang X D, et al. Fine-scale environmental heterogeneities of tidal creeks affect distribution of crab burrows in a Chinese salt marsh[J]. Ecological Engineering, 2009, 35(12): 1685−1692. doi: 10.1016/j.ecoleng.2009.05.002 [19] Tong Chunfu, Baustian J J, Graham S A, et al. Salt marsh restoration with sediment-slurry application: Effects on benthic macroinvertebrates and associated soil-plant variables[J]. Ecological Engineering, 2013, 51: 151−160. doi: 10.1016/j.ecoleng.2012.12.010 [20] Edgar G J, Robertson A I. The influence of seagrass structure on the distribution and abundance of mobile epifauna: Pattern and process in a Western Australian Amphibolis bed[J]. Journal of Experimental Marine Biology and Ecology, 1992, 160(1): 13−31. doi: 10.1016/0022-0981(92)90107-L [21] Capehart A A, Hackney C T. The potential role of roots and rhizomes in structuring salt-marsh benthic communities[J]. Estuaries, 1989, 12(2): 119−122. doi: 10.2307/1351503 [22] Yang S L. The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary[J]. Estuarine, Coastal and Shelf Science, 1998, 47(2): 227−233. doi: 10.1006/ecss.1998.0348 [23] 杨泽华, 童春富, 陆健健. 长江口湿地三个演替阶段大型底栖动物群落特征[J]. 动物学研究, 2006, 27(4): 411−418.Yang Zehua, Tong Chunfu, Lu Jianjian. Characteristics of macrobenthic fauna communities in three successional stages of the new emergent salt marsh in an estuary of the Yangtze River[J]. Zoological Research, 2006, 27(4): 411−418. [24] 张玉平, 由文辉, 焦俊鹏. 长江口九段沙湿地底栖动物群落研究[J]. 上海水产大学学报, 2006, 15(2): 169−172.Zhang Yuping, You Wenhui, Jiao Junpeng. Studies on macrozoobenthic community of Jiuduansha wetland in the Yangtze River Estuary[J]. Journal of Shanghai Fisheries University, 2006, 15(2): 169−172. [25] 周晓, 王天厚, 葛振鸣, 等. 长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析[J]. 生物多样性, 2006, 14(2): 165−171. doi: 10.3321/j.issn:1005-0094.2006.02.011Zhou Xiao, Wang Tianhou, Ge Zhenming, et al. Impact of Spartina alterniflora invasion on the macrobethos community of Jiuduansha’s intertidal mudflat in the Yangtze River estuary[J]. Biodiversity Science, 2006, 14(2): 165−171. doi: 10.3321/j.issn:1005-0094.2006.02.011 [26] Weslawski J M, Szymelfenig M, Zajaczkowski M, et al. Influence of salinity and suspended matter on benthos of an Arctic tidal flat[J]. ICES Journal of Marine Science, 1999, 56(S): 194−202. [27] Bonsdorff E, Norkko A, Sandberg E. Structuring zoobenthos: The importance of predation, siphon cropping and physical disturbance[J]. Journal of Experimental Marine Biology and Ecology, 1995, 192(1): 125−144. doi: 10.1016/0022-0981(95)00067-2 [28] Dittmann S. Zonation of benthic communities in a tropical tidal flat of north-east Australia[J]. Journal of Sea Research, 2000, 43(1): 33−51. doi: 10.1016/S1385-1101(00)00004-6 [29] Nanami A, Saito H, Akita T, et al. Spatial distribution and assemblage structure of macrobenthic invertebrates in a brackish lake in relation to environmental variables[J]. Estuarine, Coastal and Shelf Science, 2005, 63(1/2): 167−176. [30] Teske P R, Wooldridge T H. What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs. sediment particle size[J]. Estuarine, Coastal and Shelf Science, 2003, 57(1/2): 225−238. [31] 袁兴中, 陆健健. 长江口潮滩湿地大型底栖动物群落的生态学特征[J]. 长江流域资源与环境, 2002, 11(5): 414−420. doi: 10.3969/j.issn.1004-8227.2002.05.005Yuan Xingzhong, Lu Jianjian. Ecological characteristics of macrozoobenthic community of tidal flat wetland in the Changjiang Estuary[J]. Resources and Environment in the Yangtze Basin, 2002, 11(5): 414−420. doi: 10.3969/j.issn.1004-8227.2002.05.005 [32] Quan Weimin, Shi Liyan, Chen Yaqu. Comparison of nekton use for Cordgrass Spartina alterniflora and bulrush Scirpus mariqueter marshes in the Yangtze River Estuary, China[J]. Estuaries and Coasts, 2011, 34(2): 405−416. doi: 10.1007/s12237-010-9344-8