留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海北部小型底栖动物群落对径流及黑潮暖流入侵的响应

刘清河 马林 李新正

刘清河,马林,李新正. 东海北部小型底栖动物群落对径流及黑潮暖流入侵的响应[J]. 海洋学报,2020,42(2):52–64,doi:10.3969/j.issn.0253−4193.2020.02.006
引用本文: 刘清河,马林,李新正. 东海北部小型底栖动物群落对径流及黑潮暖流入侵的响应[J]. 海洋学报,2020,42(2):52–64,doi:10.3969/j.issn.0253− 4193.2020.02.006
Liu Qinghe,Ma Lin,Li Xinzheng. The communities of meiofauna in the northern East China Sea and their responses to runoff and the intrusion of Kuroshio Current[J]. Haiyang Xuebao,2020, 42(2):52–64,doi:10.3969/j.issn.0253−4193.2020.02.006
Citation: Liu Qinghe,Ma Lin,Li Xinzheng. The communities of meiofauna in the northern East China Sea and their responses to runoff and the intrusion of Kuroshio Current[J]. Haiyang Xuebao,2020, 42(2):52–64,doi:10.3969/j.issn.0253−4193.2020.02.006

东海北部小型底栖动物群落对径流及黑潮暖流入侵的响应

doi: 10.3969/j.issn.0253-4193.2020.02.006
基金项目: 国家自然科学基金(31772415,31872194);中国科学院战略性先导专项(XDA11020305)。
详细信息
    作者简介:

    刘清河(1989—),男,山东省临沂市人,博士,主要从事小型底栖动物生态学和分类学研究。E-mail:hdqinghe@126.com

    通讯作者:

    李新正,研究员,主要从事海洋生物分类和系统演化研究。E-mail:lixzh@qdio.ac.cn

  • 中图分类号: P735

The communities of meiofauna in the northern East China Sea and their responses to runoff and the intrusion of Kuroshio Current

  • 摘要: 为探究小型底栖动物群落在东海北部及其临近海域的分布规律,及其对环境因子的响应,于2016年9月和12月,对研究海域共计20个站位的小型底栖动物和环境因子进行了取样调查。调查结果显示,研究海域内共鉴定出小型底栖动物类群16个,其中海洋线虫为绝对优势类群,其他优势类群主要包括桡足类、动吻类和多毛类。9月航次小型底栖动物平均丰度为(1 758±759)个/(10 cm2),线虫占95.6%;平均生物量为(1 216.4±464.7) μg/(10 cm2)(干重),线虫占55.26%。12月航次平均丰度为(2 011±1 471)个/(10 cm2),线虫占95.6%;平均生物量为(1 143.0±755.0)μg/(10 cm2)(干重),线虫占67.28%。聚类分析结果显示,小型底栖动物群落主要可以划分为近岸和外海两个组,其中近岸组小型底栖动物丰度显著高于外海站位。但在各断面分布上,绝大多数站位小型底栖动物丰度最高值均出现在60 m等深线附近,并且该水深处站位的温度和盐度数值均表现出黑潮水的特征。黑潮近岸分支对东海陆架入侵是导致小型底栖动物分布差异的重要原因,小型底栖动物在60 m等深线附近具有的高丰度值可作为其对黑潮入侵的响应。推测,黑潮入侵所导致的水体初级生产力增加以及黑潮水所携带的溶氧可能是导致该深度处小型底栖动物丰度增加的主要原因。
  • 图  1  采样站位

    蓝色♦代表9月采样站位,红色●代表12月采样站位

    Fig.  1  Sampling sites

    Blue ♦ represents the sites in September, red ● represents the sites in December

    图  2  各站位沉积物不同粒径颗粒所占百分比

    Fig.  2  Percentages of different grain sizes of the sediment in each site

    图  3  各站位沉积物颗粒平均粒径

    Fig.  3  Average grain size of the sediment of each site

    图  4  研究海域环境因子主成分分析

    Fig.  4  Results of PCA of environmental variables of the study area

    图  5  小型底栖动物丰度和生物量分布

    a. 总丰度分布;b. 总生物量分布;c. 线虫丰度分布;d. 桡足类丰度分布

    Fig.  5  Distribution patterns of meiofaunal abundance and biomass

    a. Total abundance; b. total biomass; c. nematodes abundance; d. copepods abundance

    图  6  研究海域小型底栖动物群落聚类分析

    Fig.  6  CLUSTER analysis of meiofaunal assemblages of the study area

    图  7  黄海沿岸流、黑潮分支、上升流和低氧中心区和小型底栖动物丰度分布

    Fig.  7  Water currents, upwelling, center of low oxygen area, and distribution of meiofauna

    表  1  各站位水深、底层和表层水温和盐度

    Tab.  1  Depth, temperature and salinity of the surface and bottom water of each site

    2016年9月2016年12月
    站位D/mTB/℃SBTS/℃SS站位D/mTB/℃SBTS/℃SS
    C12824.332.225.331.5B13017.231.515.728.8
    C34224.732.525.732.5B25218.933.717.031.9
    C54422.031.125.429.7B36119.434.219.733.9
    C65814.232.225.429.7B46619.534.321.033.8
    D12123.531.526.217.5B56820.234.121.033.9
    D45419.734.525.929.4BS7919.934.320.634.1
    D65921.434.427.431.7A12516.228.815.726.6
    D86623.234.327.633.1A55420.033.920.033.9
    A66120.334.320.334.3
    A86420.334.320.334.3
    A97120.234.320.234.3
    AS6820.334.320.534.3
      注:D代表水深;TB代表底层水温;SB代表底层盐度;TS代表表层水温;SS代表表层盐度。
    下载: 导出CSV

    表  2  沉积物有机质和部分重金属含量

    Tab.  2  Organic matter and heavy metal contents of the sediment

    站位TOC/%PbCrCuZnCdAs站位TOC/%PbCrCuZnCdAs
    D10.5632.391.432.1103.20.211.6A80.5424.878.217.383.02.15.2
    D40.2719.761.310.156.42.14.3A90.3925.076.916.981.81.24.3
    D60.3419.163.110.157.11.43.9AS0.4017.357.610.457.21.33.6
    D80.3622.667.714.268.705.0B10.6936.495.839.4115.12.012.7
    C10.3718.766.417.265.61.67.2B20.7034.192.135.9108.51.59.3
    C50.4227.689.721.183.51.58.6B30.7030.990.725.4104.71.57.0
    C60.4024.372.017.470.91.65.7B40.5724.877.117.282.72.45.4
    A10.5531.090.335.6103.73.812.0B50.3216.356.28.953.22.14.9
    A50.7935.695.635.5111.8010.4BS0.2919.559.810.359.002.9
    A60.4524.775.917.681.50.26.0
      注:重金属含量单位为mg/kg。
    下载: 导出CSV

    表  3  研究海域环境因子间相关性

    Tab.  3  Correlation between environmental variables of the study area

    TOCPbCrCuZnCdAsDTS黏土粉砂
    Pb0.89**
    Cr0.86**0.97**
    Cu0.86**0.96**0.93**
    Zn0.92**0.98**0.97**0.96**
    Cd0.050.000.070.120.06
    As0.72**0.85**0.85**0.94**0.85**0.18
    D−0.33−0.50*−0.55*−0.66**−0.51*−0.28−0.84**
    T−0.24−0.28−0.20−0.27−0.25−0.48*−0.16−0.06
    S−0.21−0.44−0.50*−0.59**−0.44−0.44−0.75**0.83**0.25
    黏土0.77**0.86**0.89**0.78**0.84**−0.200.70**−0.39−0.03−0.36
    粉砂0.65**0.80**0.84**0.87**0.81**0.030.86**−0.73**0.00−0.67**0.85**
    −0.69**−0.84**−0.87**−0.87**−0.84**0.01−0.85**0.69**0.010.63**−0.89**−0.99**
    Mz−0.65**−0.80**−0.83**−0.82**−0.80**0.08−0.79**0.64**−0.070.55*−0.88**−0.98**0.99**
      注:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关;TOC代表有机质含量;D代表水深;T代表温度;S代表盐度。
    下载: 导出CSV

    表  4  小型底栖动物丰度和环境因子相关性

    Tab.  4  Relative coefficient between meiofaunal abundance and environmental variables

    总丰度线虫类桡足类动吻类多毛类双壳类介形类
    TOC0.4180.4080.4140.674**−0.131−0.270−0.325
    Pb0.510*0.504*0.3400.689**−0.100−0.238−0.175
    Cr0.476*0.473*0.2440.589**−0.074−0.257−0.161
    Cu0.534*0.532*0.2780.667**−0.239−0.283−0.206
    Zn0.500*0.498*0.2800.638**−0.149−0.292−0.265
    Cd−0.094−0.075−0.414−0.321−0.266−0.1380.239
    As0.537*0.543*0.1270.541*−0.265−0.302−0.142
    深度−0.378−0.3960.220−0.2020.2900.228−0.046
    温度−0.233−0.224−0.278−0.261−0.163−0.395−0.040
    盐度−0.337−0.3550.197−0.0650.2120.030−0.005
    黏土0.3250.3150.3380.541*−0.020−0.191−0.213
    粉砂0.3660.3690.0960.452−0.270−0.344−0.121
    −0.367−0.367−0.143−0.479*0.2300.3240.141
      注:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关。
    下载: 导出CSV

    表  5  与同海域其他研究比较

    Tab.  5  Comparison with other studies in the same area

    平均丰度/
    个·10−1 cm−2
    最高丰度/
    个·10−1 cm−2
    最高丰度
    海域
    平均生物量/μg·10−1 cm−2线虫丰度
    比/%
    线虫生物
    量比/%
    其他优势
    类群
    采样深度
    /cm
    网筛孔径
    /μm
    采样时间参考文献
    1 758±7592 97031.0°N,122.6°E1 216±46495.655.3桡足、动吻8312016年9月本研究
    2 011±14714 83728.8°N,122.7°E1 143±75595.667.3桡足、动吻8312016年12月本研究
    654±4411 62627.8°N,122.0°E807±51787.028.0桡足、多毛10502000年10月张志南等[51]
    342±252//285±17391.044.0桡足、多毛10502001年4月张志南等[51]
    1 971±5835 50031.0°N,122.6°E1 393±51691.051.0桡足、多毛、动吻、双壳8312003年6月华尔等[20]
    2 220±4783 69930.0°N,123.0°E1 529±54687.550.2桡足、动吻8312003年6月Hua等[47]
    1 081±7003 57331.0°N,123.5°E754±54695.455.4桡足、多毛、动吻、双壳10322007年4月王小谷等[22]
    1 140±6752 51530.5°N,123°E1 058±62785.736.9桡足、动吻、多毛8312009年6月吴秀琴[56]
    1 081±7002 73931.0°N,122.5°E600±37494.468.1涡虫、桡足、动吻、多毛8312009年11月于婷婷和
    徐奎栋[23]
    1 947±8493 83131.0°N,123.5°E/90.037.0桡足、多毛、动吻8312011年4月孟昭翠[55]
    1 203±1911 50132.0°N,124.0°E723±17194.162.1桡足、动吻、多毛8312012年7月史本泽等[24]
    下载: 导出CSV
  • [1] 李新正. 我国海洋大型底栖生物多样性研究及展望: 以黄海为例[J]. 生物多样性, 2011, 19(6): 676−684.

    Li Xinzheng. An overview of studies on marine macrobenthic biodiversity from Chinese waters: principally from the Yellow Sea[J]. Biodiversity Science, 2011, 19(6): 676−684.
    [2] Higgins R P, Thiel H. Introduction to the Study of Meiofauna[M]. Washington D. C. : Smithsonian Institute Press, 1988.
    [3] Giere O. Meiobenthology: the Microscopic Motile Fauna of Aquatic Sediments[M]. 2nd ed. Berlin, Heidelberg: Springer, 2009.
    [4] Nascimento F J A, Näslund J, Elmgren R. Meiofauna enhances organic matter mineralization in soft sediment ecosystems[J]. Limnology and Oceanography, 2012, 57(1): 338−346. doi: 10.4319/lo.2012.57.1.0338
    [5] Bonaglia S, Nascimento F J A, Bartoli M, et al. Meiofauna increases bacterial denitrification in marine sediments[J]. Nature Communications, 2014, 5: 5133. doi: 10.1038/ncomms6133
    [6] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4): 1−16.

    Su Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Haiyang Xuebao, 2001, 23(4): 1−16.
    [7] 白虹, 王凡. 台湾暖流水和长江冲淡水在32°N断面和PN断面上的分布及其变化[J]. 海洋科学集刊, 2010(50): 11−22.

    Bai Hong, Wang Fan. Distributions and variations of the Taiwan Warm Current Water and Changjiang Diluted Water along 32°N and PN sections[J]. Studia Marina Sinica, 2010(50): 11−22.
    [8] Yang Dezhou, Yin Baoshu, Liu Zhiliang, et al. Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C007528.
    [9] 于仁成, 张清春, 孔凡洲, 等. 长江口及其邻近海域有害藻华的发生情况、危害效应与演变趋势[J]. 海洋与湖沼, 2017, 48(6): 1178−1186.

    Yu Rencheng, Zhang Qingchun, Kong Fanzhou, et al. Status, impacts and long-term changes of harmful algal blooms in the sea area adjacent to the Changjiang River estuary[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1178−1186.
    [10] Wang Hongjie, Dai Minhan, Liu Jinwen, et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary[J]. Environmental Science & Technology, 2016, 50(5): 2255−2263.
    [11] 李建生, 李圣法, 丁峰元, 等. 长江口近海鱼类多样性的年际变化[J]. 中国水产科学, 2007, 14(4): 637−643. doi: 10.3321/j.issn:1005-8737.2007.04.016

    Li Jiansheng, Li Shengfa, Ding Fengyuan, et al. Analysis on annual change of fish diversity in Yangtze estuary offshore water area[J]. Journal of Fishery Sciences of China, 2007, 14(4): 637−643. doi: 10.3321/j.issn:1005-8737.2007.04.016
    [12] 孙鹏飞, 戴芳群, 陈云龙, 等. 长江口及其邻近海域渔业资源结构的季节变化[J]. 渔业科学进展, 2015, 36(6): 8−16. doi: 10.11758/yykxjz.20150602

    Sun Pengfei, Dai Fangqun, Chen Yunlong, et al. Seasonal variations in structure of fishery resource in the Yangtze River estuary and its adjacent waters[J]. Progress in Fishery Sciences, 2015, 36(6): 8−16. doi: 10.11758/yykxjz.20150602
    [13] Xian Weiwei, Kang Bin, Liu Ruiyu. Jellyfish blooms in the Yangtze Estuary[J]. Science, 2005, 307(5706): 41.
    [14] 孙松. 对黄、东海水母暴发机理的新认知[J]. 海洋与湖沼, 2012, 43(3): 406−410. doi: 10.11693/hyhz201203002002

    Sun Song. New perception of jellyfish bloom in the East China Sea and Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2012, 43(3): 406−410. doi: 10.11693/hyhz201203002002
    [15] 李宝泉, 李新正, 王洪法, 等. 长江口附近海域大型底栖动物群落特征[J]. 动物学报, 2007, 53(1): 76−82. doi: 10.3969/j.issn.1674-5507.2007.01.009

    Li Baoquan, Li Xinzheng, Wang Hongfa, et al. Characters of a macrobenthic community off the Changjiang River Estuary[J]. Acta Zoologica Sinica, 2007, 53(1): 76−82. doi: 10.3969/j.issn.1674-5507.2007.01.009
    [16] 刘录三, 孟伟, 田自强, 等. 长江口及毗邻海域大型底栖动物的空间分布与历史演变[J]. 生态学报, 2008, 28(7): 3027−3034.

    Liu Lusan, Meng Wei, Tian Ziqiang, et al. Distribution and variation of macrobenthos from the Changjiang Estuary and its adjacent waters[J]. Acta Ecologica Sinica, 2008, 28(7): 3027−3034.
    [17] Yan Jia, Xu Yong, Sui Jixing, et al. Long-term variation of the macrobenthic community and its relationship with environmental factors in the Yangtze River estuary and its adjacent area[J]. Marine Pollution Bulletin, 2017, 123(1/2): 339−348.
    [18] Xu Yong, Yu Fei, Li Xinzheng, et al. Spatiotemporal patterns of the macrofaunal community structure in the East China Sea, off the coast of Zhejiang, China, and the impact of the Kuroshio Branch Current[J]. PLoS One, 2018, 13(1): e0192023. doi: 10.1371/journal.pone.0192023
    [19] Shou Lu, Zeng Jiangning, Liao Yibo, et al. Temporal and spatial variability of benthic macrofauna communities in the Yangtze River estuary and adjacent area[J]. Aquatic Ecosystem Health & Management, 2013, 16(1): 31−39.
    [20] 华尔, 张志南, 张艳. 长江口及邻近海域小型底栖生物丰度和生物量[J]. 生态学报, 2005, 25(9): 2234−2242. doi: 10.3321/j.issn:1000-0933.2005.09.015

    Hua Er, Zhang Zhinan, Zhang Yan. Abundance and biomass of meiobenthos in the Changjiang (Yangtze River) estuary and its adjacent waters[J]. Acta Ecologica Sinica, 2005, 25(9): 2234−2242. doi: 10.3321/j.issn:1000-0933.2005.09.015
    [21] Hua E, Zhang Z N, Zhang Y. Environmental factors affecting nematode community structure in the Changjiang Estuary and its adjacent waters[J]. Journal of the Marine Biological Association of the United Kingdom, 2009, 89(1): 109−117. doi: 10.1017/S0025315408002361
    [22] 王小谷, 王春生, 张东声, 等. 长江口及其陆架春季小型底栖生物丰度和生物量[J]. 生态学报, 2010, 30(17): 4717−4727.

    Wang Xiaogu, Wang Chunsheng, Zhang Dongsheng, et al. Abundance and biomass of meiofauna in the Changjiang Estuary and its adjacent continental shelf waters in spring, 2007[J]. Acta Ecologica Sinica, 2010, 30(17): 4717−4727.
    [23] 于婷婷, 徐奎栋. 长江口及邻近海域秋冬季小型底栖动物类群组成与分布[J]. 生态学报, 2013, 33(15): 4556−4566.

    Yu Tingting, Xu Kuidong. Assemblage composition and distribution of meiobenthos in the Yangtze Estuary and its adjacent waters in autumn-winter season[J]. Acta Ecologica Sinica, 2013, 33(15): 4556−4566.
    [24] 史本泽, 于婷婷, 徐奎栋. 长江口及东海夏季小型底栖动物丰度和生物量变化[J]. 生态学报, 2015, 35(9): 3093−3103.

    Shi Benze, Yu Tingting, Xu Kuidong. Abundance and biomass of meiofauna in the Yangtze Estuary and East China Sea in summer, with special reference to changes over the past ten years[J]. Acta Ecologica Sinica, 2015, 35(9): 3093−3103.
    [25] Widbom B. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna[J]. Marine Biology, 1984, 84(1): 101−108. doi: 10.1007/BF00394532
    [26] 刘清河, 刘晓收, 许嫚, 等. 夏季南黄海冷水团及其周边海域小型底栖动物类群组成与分布[J]. 生态学报, 2015, 35(24): 8062−8074.

    Liu Qinghe, Liu Xiaoshou, Xu Man, et al. Meiofaunal assemblage and distribution in the southern Yellow Sea Cold Water Mass and its adjacent waters in summer[J]. Acta Ecologica Sinica, 2015, 35(24): 8062−8074.
    [27] McIntyre A D. Meiobenthos of sub-littoral muds[J]. Journal of the Marine Biological Association of the United Kingdom, 1964, 44(3): 665−674. doi: 10.1017/S0025315400027843
    [28] Clarke K R, Gorley R N. Primer v6: user manual/Tutorial[M]. Plymouth: Primer-e, 2006.
    [29] 赵保仁, 任广法, 曹德明, 等. 长江口上升流海区的生态环境特征[J]. 海洋与湖沼, 2001, 32(3): 327−333. doi: 10.3321/j.issn:0029-814X.2001.03.014

    Zhao Baoren, Ren Guangfa, Cao Deming, et al. Characteristics of the ecological environment in upwelling area adjacent to the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2001, 32(3): 327−333. doi: 10.3321/j.issn:0029-814X.2001.03.014
    [30] 吴晓丹, 宋金明, 李学刚. 长江口邻近海域水团特征与影响范围的季节变化[J]. 海洋科学, 2014, 38(12): 110−119. doi: 10.11759/hykx20140305001

    Wu Xiaodan, Song Jinming, Li Xuegang. Seasonal variation of water mass characteristic and influence area in the Yangtze Estuary and its adjacent waters[J]. Marine Sciences, 2014, 38(12): 110−119. doi: 10.11759/hykx20140305001
    [31] 汤毓祥, 邹娥梅, 李兴宰, 等. 南黄海环流的若干特征[J]. 海洋学报, 2000, 22(1): 1−16.

    Tang Yuxiang, Zou Emei, Lie H Js, et al. Some features of circulation in the southern Huanghai Sea[J]. Haiyang Xuebao, 2000, 22(1): 1−16.
    [32] 张志欣, 郭景松, 乔方利, 等. 苏北沿岸水的去向与淡水来源估算[J]. 海洋与湖沼, 2016, 47(3): 527−532.

    Zhang Zhixin, Guo Jingsong, Qiao Fangli, et al. Whereabouts and freshwater origination of the Subei coastal water[J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 527−532.
    [33] 鲍献文, 林霄沛, 吴德星, 等. 东海陆架环流季节变化的模拟与分析[J]. 中国海洋大学学报, 2005, 35(3): 349−356.

    Bao Xianwen, Lin Xiaopei, Wu Dexing, et al. Simulation and analysis of shelf circulation and its seasonal variability in the East China Sea[J]. Periodical of Ocean University of China, 2005, 35(3): 349−356.
    [34] 韦钦胜, 于志刚, 夏长水, 等. 夏季长江口外低氧区的动态特征分析[J]. 海洋学报, 2011, 33(6): 100−109.

    Wei Qinsheng, Yu Zhigang, Xia Changshui, et al. A preliminary analysis on the dynamic characteristics of the hypoxic zone adjacent to the Changjiang Estuary in summer[J]. Haiyang Xuebao, 2011, 33(6): 100−109.
    [35] 刘海霞, 李道季, 高磊, 等. 长江口夏季低氧区形成及加剧的成因分析[J]. 海洋科学进展, 2012, 30(2): 186−197. doi: 10.3969/j.issn.1671-6647.2012.02.004

    Liu Haixia, Li Daoji, Gao Lei, et al. Study on main influencing factors of formation and deterioration of summer hypoxia off the Yangtze River estuary[J]. Advances in Marine Science, 2012, 30(2): 186−197. doi: 10.3969/j.issn.1671-6647.2012.02.004
    [36] 蒲新明, 吴玉霖, 张永山. 长江口区浮游植物营养限制因子的研究Ⅰ. 秋季的营养限制情况[J]. 海洋学报, 2000, 22(4): 60−66.

    Pu Xinming, Wu Yulin, Zhang Yongshan. Nutrient limitation of phytoplankton in the Changjiang Estuary Ⅰ. Condition of nutrient limitation in autumn[J]. Haiyang Xuebao, 2000, 22(4): 60−66.
    [37] 文斐, 孙晓霞, 郑珊, 等. 2011年春、夏季黄、东海叶绿素a和初级生产力的时空变化特征[J]. 海洋与湖沼, 2012, 43(3): 438−444. doi: 10.11693/hyhz201203006006

    Wen Fei, Sun Xiaoxia, Zheng Shan, et al. Spatial and seasonal variations of chlorophyll a and primary productivity in spring and summer in the Yellow Sea and East China Sea[J]. Oceanologia et Limnologia Sinica, 2012, 43(3): 438−444. doi: 10.11693/hyhz201203006006
    [38] 李照, 宋书群, 李才文. 长江口及其邻近海域叶绿素a分布特征及其与低氧区形成的关系[J]. 海洋科学, 2016, 40(2): 1−10. doi: 10.11759/hykx20150518001

    Li Zhao, Song Shuqun, Li Caiwen. Distribution of chlorophyll a and its correlation with the formation of hypoxia in the Changjiang River Estuary and its adjacent waters[J]. Marine Sciences, 2016, 40(2): 1−10. doi: 10.11759/hykx20150518001
    [39] Zhu Zhuoyi, Zhang Jing, Wu Ying, et al. Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition[J]. Marine Chemistry, 2011, 125(1/4): 108−116.
    [40] Thiel H. Benthos in upwelling regions[M]//Boje R, Tomczak M. Upwelling Ecosystems. Berlin, Heidelberg: Springer, 1978: 124−138.
    [41] Josefson A B, Widbom B. Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin[J]. Marine Biology, 1988, 100(1): 31−40. doi: 10.1007/BF00392952
    [42] Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063−2098. doi: 10.5194/bg-6-2063-2009
    [43] Levin L A. Oxygen minimum zone benthos: adaptation and community response to hypoxia[J]. Oceanography and Marine Biology: an Annual Review, 2003, 41: 1−45.
    [44] Murrell M C, Fleeger J W. Meiofauna abundance on the Gulf of Mexico continental shelf affected by hypoxia[J]. Continental Shelf Research, 1989, 9(12): 1049−1062. doi: 10.1016/0278-4343(89)90057-5
    [45] Levin L A, Huggett C L, Wishner K F. Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the eastern Pacific Ocean[J]. Journal of Marine Research, 1991, 49(4): 763−800. doi: 10.1357/002224091784995756
    [46] Neira C, Sellanes J, Levin L A, et al. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(11): 2453−2472. doi: 10.1016/S0967-0637(01)00018-8
    [47] Hua Er, Zhang Zhinan, Zhang Yan. Meiofauna distributions at the oxygen minimum zone in Changjiang (Yangtze) River Estuary waters[J]. Acta Oceanologica Sinica, 2006, 25(5): 120−134.
    [48] Wetzel M A, Fleeger J W, Powers S P. Effects of hypoxia and anoxia on meiofauna: a review with new data from the gulf of Mexico[J]. Coastal Hypoxia: Consequences for Living Resources and Ecosystems, 2001, 58: 165.
    [49] Grego M, Riedel B, Stachowitsch M, et al. Meiofauna winners and losers of coastal hypoxia: case study harpacticoid copepods[J]. Biogeosciences, 2014, 11: 281−292.
    [50] Liu Xiaoshou, Liu Qinghe, Zhang Yan, et al. Effects of Yellow Sea Cold Water Mass on marine nematodes based on biological trait analysis[J]. Marine Environmental Research, 2018, 141: 167−185. doi: 10.1016/j.marenvres.2018.08.013
    [51] 张志南, 林岿旋, 周红, 等. 东、黄海春秋季小型底栖生物丰度和生物量研究[J]. 生态学报, 2004, 24(5): 997−1005. doi: 10.3321/j.issn:1000-0933.2004.05.021

    Zhang Zhinan, Lin Kuixuan, Zhou Hong, et al. Abundance and biomass of meiobenthos in autumn and spring in the East China Sea and the Yellow Sea[J]. Acta Ecologica Sinica, 2004, 24(5): 997−1005. doi: 10.3321/j.issn:1000-0933.2004.05.021
    [52] Hao Qiang, Chai Fei, Xiu Peng, et al. Spatial and temporal variation in chlorophyll a concentration in the Eastern China Seas based on a locally modified satellite dataset[J]. Estuarine, Coastal and Shelf Science, 2019, 220: 220−231. doi: 10.1016/j.ecss.2019.01.004
    [53] Zuo Jiulong, Song Jinming, Yuan Huamao, et al. Impact of Kuroshio on the dissolved oxygen in the East China Sea region[J]. Journal of Oceanology and Limnology, 2019, 37(2): 513−524. doi: 10.1007/s00343-019-7389-5
    [54] 翁学传, 王从敏. 关于台湾暖流水的研究[J]. 青岛海洋大学学报, 1989, 19(1): 159−68.

    Weng Xuechuan, Wang Congmin. A study on Taiwan warm current water[J]. Journal of Ocean University of Qingdao, 1989, 19(1): 159−68.
    [55] 孟昭翠, 徐奎栋. 长江口及东海春季底栖硅藻、原生动物和小型底栖生物的生态特点[J]. 生态学报, 2013, 33(21): 6813−6824.

    Meng Zhaocui, Xu Kuidong. Ecological characteristics of benthic diatoms, protozoa and meiobenthos in the sediments of the Changjiang Estuary and East China Sea in spring[J]. Acta Ecologica Sinica, 2013, 33(21): 6813−6824.
    [56] 吴秀芹. 黄东海夏季小型底栖动物的群落结构与分布研究[D]. 青岛: 中国海洋大学, 2011.

    Wu Xiuqin. Community structure and distribution of meiofauna in the Yellow Sea and East China Sea in summer[D]. Qingdao: Ocean University of China, 2011.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  40
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-05-05
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回