留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应

解兴伟 袁华茂 宋金明 段丽琴 梁宪萌 王启栋 任成喆 王越奇

解兴伟,袁华茂,宋金明,等. 东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J]. 海洋学报,2020,42(2):30–43,doi:10.3969/j.issn.0253−4193.2020.02.004
引用本文: 解兴伟,袁华茂,宋金明,等. 东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J]. 海洋学报,2020,42(2):30–43,doi:10.3969/j.issn.0253−4193.2020.02.004
Xie Xingwei,Yuan Huamao,Song Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea[J]. Haiyang Xuebao,2020, 42(2):30–43,doi:10.3969/j.issn.0253−4193.2020.02.004
Citation: Xie Xingwei,Yuan Huamao,Song Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea[J]. Haiyang Xuebao,2020, 42(2):30–43,doi:10.3969/j.issn.0253−4193.2020.02.004

东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应

doi: 10.3969/j.issn.0253-4193.2020.02.004
基金项目: 青岛海洋科学与技术试点国家实验室鳌山科技创新计划项目“近海生态灾害发生机理与防控策略”(2016ASKJ02-4);山东省重大科技创新工程专项“近海富营养化及其生态灾害环境驱动作用”(2018SDKJ0504-1);国家基金委面上项目“长江口邻近海域痕量元素沉积物-水界面迁移及对缺氧环境的响应”(41676068)。
详细信息
    作者简介:

    解兴伟(1993—),女,河北省衡水市人,主要从事海洋生物地球化学研究。E-mail:xiexingwei128@outlook.com

    通讯作者:

    袁华茂(1975—),男,江苏省南通市人,研究员,主要从事海洋生物地球化学研究。E-mail:yuanhuamao@qdio.ac.cn

    宋金明(1964—),男,河北省枣强县人,研究员,主要从事海洋生物地球化学研究。E-mail:jmsong@qdio.ac.cn

  • 中图分类号: P734

Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea

  • 摘要: 氧化还原敏感元素(Redox Sensitive Elements,RSE)如V、Cr、Mo、U等,通常在氧化条件下呈溶解态,在还原沉积环境中除Fe、Mn外,RSE被还原成低价态转移至沉积物中富集积累,因此可以利用氧化还原敏感元素在沉积物中的富集情况反演沉积环境的氧化还原状况。本文通过研究东海内陆架季节性低氧海区Zb7沉积柱中氧化还原敏感元素V、Cr、Ni、Cu、Zn、Mo、U的垂直分布、富集特征和比值,探究沉积环境氧化还原状况;发现RSE/Al和富集系数自1978年以来呈增加的趋势,但自2009年开始有所降低,整体RSE富集系数均小于3,未见明显富集。RSE比值V/Cr<2、Ni/Co<5、U/Th<0.75、0.25<(Cu+Mo)/Zn<0.55,以及MoEF/UEF比值主要分布在0.08~0.3倍海水Mo/U值之间,均指示氧化的沉积环境。RSE/Al与Fe/Al、Mn/Al具有显著的相关性,表明RSE在剔除陆源碎屑输入后,主要通过与Fe、Mn氧化物结合进入沉积物,也指示氧化的沉积环境。研究结果与该区域溶解氧历史数据反映的季节性低氧结果不一致,可能与RSE在夏季季节性低氧时,沉积物中的富集信号在秋冬季溶氧水平恢复后缺失有关。尽管RSE不能有效指示东海季节性低氧环境,但Zb7沉积柱RSE在1978年后富集程度的增加以及2011年后的降低,在一定程度上反映了该区域自1978年后季节性低氧程度加重,2009年后又有所缓解的变化趋势。
  • 图  1  Zb7采样站位图及邻近海域低氧中心位置和低氧区范围(数据来源见表1

    Fig.  1  Site map of Zb7 sampling station and location of hypoxic center and range of hypoxic zone in adjacent sea area (see Table 1 for data sources)

    图  2  Zb7柱状沉积物210Pbex的垂直分布(a)和定年结果(b)

    Fig.  2  Vertical distribution of 210Pbex (a) and 210Pb-derived chronology (b) of Zb7 core sediments

    图  3  Zb7柱状沉积物137Cs测定结果

    Fig.  3  The 137Cs determination results of Zb7 core sediments

    图  4  Zb7柱状沉积物粒度组成

    Fig.  4  The composition of grain size of Zb7 core sediments

    图  5  Zb7柱状沉积物TOC组成

    Fig.  5  The TOC composition of Zb7 core sediments

    图  6  Zb7柱状沉积样品中RSE/Al垂直分布特征

    Fig.  6  The vertical distribution of RSE/Al of Zb7 core sediments

    图  7  Zb7柱状沉积样品中RSE富集系数的垂直分布特征

    Fig.  7  The vertical distribution of RSE’s enrichment factor of Zb7 core sediments

    图  8  Zb7柱状沉积样品RSE比值垂直分布

    图中红色竖线分别代表氧化环境-次氧化环境的阈值,从左到右,依次代表V/Cr=2,N/Co=5,U/Th=0.75,(Cu+Mo)/Zn=0.25,0.55

    Fig.  8  The vertical distribution diagram of RSE’ ratios of Zb7 core sediments

    The red vertical lines in the figure represent the threshold values of the RSE ratio in the oxic-suboxic sedimentary environment respectively, which successively represent V/Cr=2,N/Co=5,U/Th=0.75,(Cu+Mo)/Zn=0.25,0.55 from left to right

    图  9  Zb7柱状沉积样品MoEF-UEF共变图

    SW表示现代海水Mo/U的数值

    Fig.  9  MoEF-UEF diagram of Zb7 core sediments

    SW represents MoEF /UEF in seawater

    图  10  V/Fe、Mo/Al和TOC关系图

    Fig.  10  Correlation map between V/Fe, Mo/Al and TOC

    表  1  Zb7站位附近水域近年来低氧状况统计

    Tab.  1  Statistics of low oxygen conditions in adjacent waters of Zb7 in recent years

    时间面积/km2低氧位置氧最小值/mg·L−1氧平均值/mg·L−1数据来源
    1958年9月16 40029.23°N122.47°E0.732.51参考文献[10]
    1958年10月2 37029.73°N122.76°E1.832.51参考文献[10]
    1975年10月2 33030.88°N123.50°E2.072.72参考文献[10]
    1980年10月52829.01°N123.50°E2.592.85参考文献[10]
    1999年8月13 70030.83°N122.75°E1.002.51参考文献[8]
    2003年6月8 37030.95°N122.71°E1.002.56参考文献[18]
    2006年10月11 00029.07°N123.67°E1.912.88参考文献[8]
    2015年6月30.0°N123.0°E3.06参考文献[6]
    2015年8月29.14°N122.47°E1.92参考文献[23]
    下载: 导出CSV

    表  2  微波消解程序

    Tab.  2  Microwave digestion procedure

    功率/W升温时间/min升至温度/℃保持时间/min
    1 60031403
    1 60031605
    1 600318030
    下载: 导出CSV

    表  3  RSE/Al与Fe/Al、Mn/Al和TOC的相对变化关系

    Tab.  3  Relative variations of RSE/Al with respect to Fe/Al、Mn/Al and TOC

    V/AlCr/AlNi/AlCu/AlZn/AlMo/AlU/Al
    TOC0.011−0.0080.1640.2090.1540.341−0.080
    Fe/Al0.826**0.779**0.808**0.832**0.863**0.726*0.644**
    Mn/Al0.887**0.856**0.824**0.847**0.885**0.694*0.721**
      注:*代表显著性水平p<0.05(双尾检验);**代表显著性水平p<0.01(双尾检验)。
    下载: 导出CSV

    表  4  Zb7柱状沉积物RSE与粒度的相关性分析

    Tab.  4  Correlation analysis of RSE and grain sizes of Zb7 core sediments

    <1 μm1~2 μm2~4 μm<4 μm4~8 μm8~16/μm16~63 μm4~63 μmD50Dav
    Al0.0700.480**0.2840.381*0.3210.024−0.270−0.381*−0.331−0.289
    Fe−0.0750.375*0.357*0.386*0.503**−0.19−0.205−0.386*−0.425**−0.287
    Mn−0.0860.414*0.1560.2550.3250.053−0.244−0.255−0.293−0.267
    V−0.1780.1450.1550.1520.367*−0.407*0.072−0.152−0.259−0.038
    Cr−0.2720.0850.1160.0970.345*−0.394*0.095−0.097−0.212−0.005
    Ni−0.305−0.0030.0790.0370.301−0.391*0.132−0.037−0.150.032
    Cu−0.2830.0550.0410.0320.253−0.2990.092−0.032−0.1530.002
    Zn−0.3040.0320.1050.0680.326−0.2690.036−0.068−0.187−0.037
    Mo−0.0920.1200.2170.1930.397*−0.195−0.086−0.193−0.285−0.187
    U−0.0820.3260.360*0.370*0.427**−0.192−0.174−0.370*−0.432**−0.276
    Th−0.0870.331*0.353*0.366*0.493**−0.075−0.265−0.366*−0.457**−0.350*
    TOC−0.1130.2720.3030.3070.504**−0.333*−0.084−0.307−0.371*−0.192
      注:*代表显著性水平p<0.05(双尾检验);**代表显著性水平p<0.01(双尾检验)。
    下载: 导出CSV

    表  5  RSE比值对氧化还原环境的指示

    Tab.  5  The indication of RSE’ ratios on redox environment

    RSE比值氧化环境
    (>2 mg/L)
    次氧化环境
    (2~0.2 mg/L)
    缺氧环境
    (<0.2 mg/L)
    参考文献
    V/Cr<2.002.00~4.25>4.25[15]
    Ni/Co<5.005.00~7.00>7.00[15]
    U/Th<0.750.75−1.25>1.25[15]
    (Cu+Mo)/Zn0.25~0.55[33]
    下载: 导出CSV

    表  6  Zb7沉积柱与长江口及其邻近海域表层沉积物中RSE/Al的对比

    Tab.  6  Comparisons of RSE /Al between Zb7 core sediments and surface sediments of the Changjiang River Estuary and its adjacent waters

    采样位置(V/Al)/103(Mo/Al)/106(U/Al)/105参考文献
    长江口外低氧区8站(31.15°N,122.56°E)1.4347.533.18[19]
    长江口外低氧区9站(31.02°N,122.62°E)1.5051.793.10[19]
    长江口外低氧区16站(30.94°N,122.72°E)2.3610.322.90[19]
    长江口外溶解氧正常区26站(29.98°N,122.74°E)1.3810.263.18[19]
    长江口外溶解氧正常区29站(29.31°N,122.18°E)1.279.393.50[19]
    Zb7沉积柱RSE/Al最高值1.7218.515.31本研究
    Zb7沉积柱RSE/Al最低值1.047.482.81本研究
    下载: 导出CSV
  • [1] 赵晨英. 乳山湾近海与黄渤海溶解氧、有机碳、氮和磷的循环与收支的关键过程研究[D]. 青岛: 国家海洋局第一海洋研究所, 2017.

    Zhao Chenying. Controlling processes of dissolved oxygen, organic carbon, nitrogen and phosphorus cycles and budgets in the coastal area of Rushan Bay and Bohai and Yellow Seas[D]. Qingdao: First Institute of Oceanography, SOA, 2017.
    [2] 韦钦胜, 王守强, 臧家业, 等. 海洋低氧现象的研究及相关问题初探[J]. 海洋开发与管理, 2009, 26(6): 54−59. doi: 10.3969/j.issn.1005-9857.2009.06.012

    Wei Qinsheng, Wang Shouqiang, Zang Jiaye, et al. Research on marine hypoxia phenomenon and some related issues[J]. Ocean Development and Management, 2009, 26(6): 54−59. doi: 10.3969/j.issn.1005-9857.2009.06.012
    [3] Stramma L, Johnson G C, Sprintall J, et al. Expanding oxygen-minimum zones in the tropical oceans[J]. Science, 2008, 320(5876): 655−658. doi: 10.1126/science.1153847
    [4] Wong G T F, Gong G C, Liu K K, et al. “Excess nitrate” in the East China Sea[J]. Estuarine, Coastal and Shelf Science, 1998, 46(3): 411−418. doi: 10.1006/ecss.1997.0287
    [5] Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008, 28(12): 1483−1489. doi: 10.1016/j.csr.2007.02.009
    [6] 刘军, 臧家业, 冉祥滨, 等. 长江口低氧区沉积物中磷的形态及其环境意义[J]. 环境科学, 2017, 38(8): 3243−3253.

    Liu Jun, Zang Jiaye, Ran Xiangbin, et al. Sedimentary phosphorus speciation in the coastal hypoxic area of Changjiang Estuary and its environmental significance[J]. Environmental Science, 2017, 38(8): 3243−3253.
    [7] 刘志国, 徐韧, 刘材材, 等. 长江口外低氧区特征及其影响研究[J]. 海洋通报, 2012, 31(5): 588−593.

    Liu Zhiguo, Xu Ren, Liu Caicai, et al. Characters of hypoxia area off the Yangtze River Estuary and its influence[J]. Marine Science Bulletin, 2012, 31(5): 588−593.
    [8] 李道季, 张经, 黄大吉, 等. 长江口外氧的亏损[J]. 中国科学: D辑, 2002, 32(8): 686−694. doi: 10.3321/j.issn:1006-9267.2002.08.009

    Li Daoji, Zhang Jing, Huang Daji, et al. Oxygen depletion off the Changjiang (Yangtze River) estuary[J]. Science in China : Series D, 2002, 32(8): 686−694. doi: 10.3321/j.issn:1006-9267.2002.08.009
    [9] 张哲, 张志锋, 韩庚辰, 等. 长江口外低氧区时空变化特征及形成、变化机制初步探究[J]. 海洋环境科学, 2012, 31(4): 469−473. doi: 10.3969/j.issn.1007-6336.2012.04.002

    Zhang Zhe, Zhang Zhifeng, Han Gengchen, et al. Spatio-temporal variation, formation and transformation of the hypoxia area off the Yangtze River estuary[J]. Marine Environmental Science, 2012, 31(4): 469−473. doi: 10.3969/j.issn.1007-6336.2012.04.002
    [10] 宋国栋. 东海溶解氧气候态分布及海洋学应用研究[D]. 青岛: 中国海洋大学, 2008.

    Song Guodong. Climatological parameters distributions of dissolved oxygen in the East China Sea and its application in the oceanography[D]. Qingdao: Ocean University of China, 2008.
    [11] Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65−78.
    [12] 于宇, 宋金明, 李学刚, 等. 沉积物微量金属元素在重建水体环境变化中的意义[J]. 地质论评, 2012, 58(5): 911−922. doi: 10.3969/j.issn.0371-5736.2012.05.013

    Yu Yu, Song Jinming, Li Xuegang, et al. Significance of sedimentary trace metals in reconstructing the aquatic environmental Changes[J]. Geological Review, 2012, 58(5): 911−922. doi: 10.3969/j.issn.0371-5736.2012.05.013
    [13] 宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40(10): 1−13.

    Song Jinming, Li Xuegang. Ecological functions and biogenic element cycling roles of marine sediment/particles[J]. Haiyang Xuebao, 2018, 40(10): 1−13.
    [14] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211−225.
    [15] Acharya S S, Panigrahi M K, Gupta A K, et al. Response of trace metal redox proxies in continental shelf environment: the Eastern Arabian Sea scenario[J]. Continental Shelf Research, 2015, 106: 70−84. doi: 10.1016/j.csr.2015.07.008
    [16] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of upper pennsylvanian kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289−318.
    [17] Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: comparison with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1−15.
    [18] 许淑梅. 长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义[D]. 青岛: 中国海洋大学, 2005.

    Xu Shumei. The distribution and environmental significance of redox sensitive elements in the hypoxia zone of the Changjiang Estuary and its Contiguous area[D]. Qingdao: Ocean University of China, 2008.
    [19] 许淑梅, 翟世奎, 张爱滨, 等. 长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义[J]. 沉积学报, 2007, 25(5): 759−766. doi: 10.3969/j.issn.1000-0550.2007.05.015

    Xu Shumei, Zhai Shikui, Zhang Aibin, et al. Distribution and environment significance of redox sensitive trace elements of the Changjiang estuary hypoxia zone and its contiguous sea area[J]. Acta Sedimentologica Sinica, 2007, 25(5): 759−766. doi: 10.3969/j.issn.1000-0550.2007.05.015
    [20] 冯旭文. 长江口百年来底层水体季节性缺氧在沉积物中的记录[D]. 杭州: 浙江大学, 2009.

    Feng Xuwen. Sedimentary records of hypoxia in the Changjiang Estuary over last 100 years[D]. Hangzhou: Zhejiang University, 2009.
    [21] 冯旭文, 金翔龙, 章伟艳, 等. 长江口外缺氧区柱样沉积物元素的分布及其百年沉积环境效应[J]. 海洋地质与第四纪地质, 2009, 29(2): 25−32.

    Feng Xuwen, Jin Xianglong, Zhang Weiyan, et al. Variation of elements in sediments from the hypoxia zone of the Yangtze estuary and its response to sedimentary environment over the last 100 years[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 25−32.
    [22] 郭伟. 东海赤潮区水体缺氧状况的沉积记录分析[D]. 青岛: 中国科学院海洋研究所, 2013.

    Guo Wei. Sedimentary records of hypoxia status in the red-tide zone of the East Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2013.
    [23] Chi Lianbao, Song Xiuxian, Yuan Yongquan, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang river estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, 125(1/2): 440−450.
    [24] 黄思静. 用Excel计算沉积物粒度分布参数[J]. 成都理工学院学报, 1999, 26(2): 195−198.

    Huang Sijing. Calculation of grain size distribution parameters of sediments by microsoft Excel[J]. Journal of Chengdu University of Technology, 1999, 26(2): 195−198.
    [25] Piper D Z, Calvert S E. A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews, 2009, 95(1/2): 63−96.
    [26] Abrahim G M S, Parker R J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand[J]. Environmental Monitoring and Assessment, 2008, 136(1/3): 227−238.
    [27] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology, 1954, 24(3): 151−158.
    [28] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
    [29] Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy[J]. Chemical Geology, 2006, 234(3/4): 321−339.
    [30] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735−1750.
    [31] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67−88.
    [32] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111−129.
    [33] Hallberg R O. A geochemical method for investigation of paleoredox conditions in sediments[J]. Ambio Special Report, 1976(4): 139−147.
    [34] 汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J]. 现代地质, 2015, 29(1): 1−13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    Tang Dongjie, Shi Xiaoying, Zhao Xiangkuan, et al. Mo-U covariation as an important proxy for sedimentary environment redox conditions—progress, problems and Prospects[J]. Geoscience, 2015, 29(1): 1−13. doi: 10.3969/j.issn.1000-8527.2015.01.001
    [35] Shaheen S M, Ali R A, Abowaly M E, et al. Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques[J]. Journal of Geochemical Exploration, 2018, 191: 28−42. doi: 10.1016/j.gexplo.2018.05.003
    [36] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
    [37] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855−862. doi: 10.1016/0016-7037(83)90151-5
    [38] 张岩松, 章飞军, 郭学武, 等. 东海秋季典型站位沉降颗粒物通量[J]. 海洋与湖沼, 2006, 37(1): 28−34. doi: 10.3321/j.issn:0029-814X.2006.01.005

    Zhang Yansong, Zhang Feijun, Guo Xuewu, et al. Autumn flux of particle settling observed at three representative stations in East China Sea[J]. Oceanologia et Limnologia Sinica, 2006, 37(1): 28−34. doi: 10.3321/j.issn:0029-814X.2006.01.005
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  37
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-12-09
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回