Variation of volatile halocarbons concentrations and its influencing factors in incubation experiments in the western Pacific Ocean
-
摘要: CH3I、CHCl3、C2HCl3和CH2Br2是挥发性卤代烃4种重要成分,对大气化学产生重要影响。于2018年10月在西太平洋进行船基现场培养实验,研究微量元素Fe (50 nmol/L)、酸化(pH=7.9)、酸化(pH=7.9)和微量元素Fe (50 nmol/L)耦合作用、微量元素Fe (50 nmol/L)和N/P (16∶1)耦合作用及沙尘(4 mg/L)对浮游植物释放CH3I、CHCl3、C2HCl3和CH2Br2含量的影响。结果表明,与对照组相比,实验组CH3I、C2HCl3和CH2Br2的释放均被不同程度抑制;CHCl3的释放除添加沙尘时表现抑制作用外,其他条件下均为促进作用;实验组培养周期内叶绿素a浓度较高,而营养盐浓度变化规律不明显。总的来说,酸化和微量元素Fe可能是影响浮游植物释放挥发性卤代烃的重要限制因素,沙尘对促进浮游植物生长繁殖的影响更为显著。Abstract: CH3I, CHCl3, C2HCl3 and CH2Br2 are the four important components of volatile halocarbons, which have important influence on atmospheric chemistry. To study the effect of Fe, ocean acidification, coupling effect of ocean acidification and Fe, coupling effect of Fe and N/P (16∶1) and dust on the concentrations of CH3I, CHCl3, C2HCl3 and CH2Br2 released by phytoplankton, an onboard incubation experiments was performed at the western Pacific Ocean in October 2018. Compared with the blank control experiment, the results show that the releases of CH3I, C2HCl3 and CH2Br2 in the experimental groups are suppressed in some extent. While the release of CHCl3 is promoted except when the dust is added. The concentration of Chl a is relatively high but the changes in nutrients concentrations are not obviously unconspicuous. In conclusion, the ocean acidification and iron fertilization might be the two virtual factors for phytoplankton to release volatile halocarbons. Besides, the growth of phytoplankton is affected significantly by the dust.
-
Key words:
- volatile halocarbons /
- ocean acidification /
- dust /
- field incubation experiments /
- western Pacific Ocean
-
表 1 实验组和对照组添加物浓度及pH
Tab. 1 Concentrations of additives added to M2 to M6, the condition of M1, and pH
添加物 不同编号培养桶中添加物质浓度及pH M1 M2 M3 M4 M5 M6 NO3-N/µmol·L−1 2.9 − − − 9.6 − PO4-P/µmol·L−1 0.075 − − − 0.6 − Fe/nmol·L−1 N/A 50 − 50 50 − 沙尘/mg·L−1 N/A − − − − 4 pH 8.2 − 7.9 7.9 − − 注:− 表示无添加物质和未测pH,N/A表示未检测到此物质。 -
[1] Solomon S, Mills M, Heidt L E, et al. On the evaluation of ozone depletion potentials[J]. Journal of Geophysical Research Atmospheres, 1992, 97(D1): 825−842. doi: 10.1029/91JD02613 [2] Cincinelli A, Pieri F, Zhang Y, et al. Compound Specific Isotope Analysis (CSIA) for chlorine and bromine: A review of techniques and applications to elucidate environmental sources and processes[J]. Environmental Pollution, 2012, 169(15): 112−127. [3] Yokouchi Y, Ooki A, Hashimoto S, et al. A Study on the Production and Emission of Marine-derived Volatile Halocarbons[M]. Tokyo: Terra Scientific Publishing Company, 2014: 1−25. [4] Lim Y K, Phang S M, Abdul Rahman N, et al. Halocarbon emissions from marine phytoplankton and climate change[J]. International Journal of Environmental Science and Technology, 2017, 14(6): 1355−1370. doi: 10.1007/s13762-016-1219-5 [5] Carpenter L J, Jones C E, Dunk R M, et al. Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean[J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1805−1816. doi: 10.5194/acp-9-1805-2009 [6] Scarratt M G, Moore R M. Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton[J]. Marine Chemistry, 1996, 54(3/4): 263−272. [7] Webb A L, Leedham-Elvidge E, Hughes C, et al. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community[J]. Biogeosciences, 2016, 13(15): 4595−4613. doi: 10.5194/bg-13-4595-2016 [8] Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1704−1709. doi: 10.1073/pnas.0812721106 [9] Kroeker K J, Kordas R L, Crim R N, et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13(11): 1419−1434. doi: 10.1111/j.1461-0248.2010.01518.x [10] Hopkins F E, Turner S M, Nightingale P D, et al. Ocean acidification and marine trace gas emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 760−765. doi: 10.1073/pnas.0907163107 [11] 马剑敏, 王洁玉, 张婵, 等. 微量元素铁对3种水华藻类生长的影响[J]. 河南师范大学学报: 自然科学版, 2017, 45(5): 114−120.Ma Jianmin, Wang Jieyu, Zhang Chan, et al. Effect of trace element iron on the growth of three kinds of bloom-forming algae[J]. Journal of Henan Normal University: Natural Science Edition, 2017, 45(5): 114−120. [12] Rueler J G, Ades D R. The role of iron nutrition in photosynthesis and nitrogen assimilation in scenedesmus quadricauda (Chlorophyceae)[J]. Journal of Phycology, 2010, 23(3): 452−457. [13] Spiller S C, Castelfranco A M,Castelfranco P A. Effects of iron and oxygen on chlorophyll biosynthesis: Ⅰ. In vivo observations on iron and oxygen-deficient plants[J]. Plant Physiology, 1982, 69(1): 107−111. doi: 10.1104/pp.69.1.107 [14] Moore R M, Wang L. The influence of iron fertilization on the fluxes of methyl halides and isoprene from ocean to atmosphere in the series experiment[J]. Deep-Sea Research, Part Ⅱ: Topical Studies in Oceanography, 2006, 53(20/22): 2389−2409. [15] 韩永翔, 宋连春, 赵天良, 等. 北太平洋地区沙尘沉降与海洋生物兴衰的关系[J]. 中国环境科学, 2006, 26(2): 157−160. doi: 10.3321/j.issn:1000-6923.2006.02.008Han Yongxiang, Song Lianchun, Zhao Tianliang, et al. The relationship between continental dust and marine phytoplankton in the North Pacific[J]. China Environmental Science, 2006, 26(2): 157−160. doi: 10.3321/j.issn:1000-6923.2006.02.008 [16] 徐军田, 高坤山. 二氧化碳和阳光紫外辐射对龙须菜生长和光合生理的影响[J]. 海洋学报, 2010, 32(5): 144−151.Xu Juntian, Gao Kunshan. The influence of carbon dioxide and solar UVR on the growth, photosynthesis and pigments contents of Gracilaria lemaneiformis[J]. Haiyang Xuebao, 2010, 32(5): 144−151. [17] Guieu C, Dulac F, Desboeufs K, et al. Large clean mesocosms and simulated deposition: A new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs[J]. Biogeosciences, 2010, 7(9): 2765−2784. doi: 10.5194/bg-7-2765-2010 [18] 杨桂朋, 尹士序, 陆小兰, 等. 吹扫-捕集气相色谱法测定海水中挥发性卤代烃[J]. 中国海洋大学学报, 2007, 37(2): 299−304.Yang Guipeng, Yin Shixu, Lu Xiaolan, et al. Determination of volatile halocarbons in seawater using purge-and-trap gas chromatography[J]. Periodical of Ocean University of China, 2007, 37(2): 299−304. [19] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. 3rd ed. Weinheim: WILEY-VCH Verlag GmbH, 1999: 160−223. [20] 张洪海. 中国东海、黄海DMS和DMSP的生物地球化学研究[D]. 青岛: 中国海洋大学, 2009: 54-56.Zhang Honghai. Studies on biogeochemistry of DMS and DMSP in the East China Sea and the Yellow Sea[D]. Qingdao: Ocean University of China, 2009: 54−56. [21] 衣晓燕, 黄有松, 陈宏举, 等. 基于围隔实验的沙尘添加对西北太平洋寡营养海区小型浮游植物群落结构的影响[J]. 中国海洋大学学报, 2017, 47(5): 27−33.Yi Xiaoyan, Huang Yousong, Chen Hongju, et al. Effects of dust deposition on micro-phytoplankton community in an oligotrophic zone of Northwest Pacific based on an enclosure experiment[J]. Periodical of Ocean University of China, 2017, 47(5): 27−33. [22] Mohamed C A R, Sabuti A A, Saili N A. Atmospheric deposition of 210Po and 210Pb in Malaysian waters during haze events[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 297(2): 257−263. doi: 10.1007/s10967-012-2394-6 [23] 侯继灵. 不同氮源和铁对浮游植物生长影响的围隔实验研究[D]. 青岛: 中国海洋大学, 2006: 72.Hou Jiling. Influence of nitrogen nutriments and iron to the growth of phytoplankton in mesocosm experiments[D]. Qingdao: Ocean University of China, 2006: 72. [24] 孙萍. 东海围隔生态系内浮游植物对营养盐的响应[D]. 青岛: 国家海洋局第一海洋研究所, 2007: 76.Sun Ping. Studies on the response of phytoplankton to nutrient input by mesocosm experiments in East China Sea[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2007: 76. [25] 栾学泉, 苏忠亮. 海洋藻类对海洋酸化响应的研究进展[J]. 山东化工, 2015, 44(15): 80−84. doi: 10.3969/j.issn.1008-021X.2015.15.031Luan Xuequan, Su Zhongliang. Research progress on response of marine algae under ocean acidification[J]. Shandong Chemical Industry, 2015, 44(15): 80−84. doi: 10.3969/j.issn.1008-021X.2015.15.031 [26] 徐智广, 邹定辉, 张鑫, 等. CO2和硝氮加富对龙须菜(Gracilaria lemaneiformis)生长、生化组分和营养盐吸收的影响[J]. 生态学报, 2008, 28(8): 3752−3759.Xu Zhiguang, Zou Dinghui, Zhang xin, et al. Effects of increased atmospheric CO2 and N supply on growth, biochemical compositions and uptake of nutrients in Gracilaria lemaneiformis (Rhodophyta)[J]. Acta Ecological Sinica, 2008, 28(8): 3752−3759. [27] 孔赟, 邹培, 宋黎明, 等. 铁对藻类生长及藻毒素合成影响研究进展[J]. 应用生态学报, 2014, 25(5): 1533−1540.Kong Yun, Zou Pei, Song Liming, et al. Effects of iron on the algae growth and microcystin synthesis: A review[J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1533−1540. [28] 王洁玉, 陈艳, 李杲光, 等. 3种微量元素对小球藻和小环藻生长的影响[J]. 环境科学与技术, 2018, 41(9): 55−60.Wang Jieyu, Chen Yan, Li Gaoguang, et al. Effects of three kinds of trace element on growth of Chlorella vulgaris and Cyclotella sp.[J]. Environmental Science & Technology, 2018, 41(9): 55−60. [29] Tan S, Shi G, Shi J, et al. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008[J]. Journal of Geophysical Research Biogeosciences, 2015, 116(G2): 66−74. [30] 丁琼瑶. 东海、黄海碘甲烷的浓度分布与海–气通量及藻类释放研究[D]. 青岛: 中国海洋大学, 2015.Ding Qiongyao. The distributions and sea-to-air fluxes of methyl iodide and production by marine phytoplankton[D]. Qingdao: Ocean University of China, 2015. [31] Hopkins F E, Kimmance S A, Stephens J A, et al. Response of halocarbons to ocean acidification in the Arctic[J]. Biogeosciences, 2013, 10(4): 2331−2345. doi: 10.5194/bg-10-2331-2013 [32] 李雁宾, 韩秀荣, 胡跃诚, 等. 营养盐对东海浮游植物生长影响的现场培养实验[J]. 海洋环境科学, 2005, 27(2): 113−117.Li Yanbin, Han Xiurong, Hu Yuecheng, et al. Test on effects of nutrients on growth of phytoplankton in East China Sea in situ[J]. Marine Environmental Science, 2005, 27(2): 113−117. [33] Caldeira K, Wickett M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365−365. doi: 10.1038/425365a [34] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1−13. doi: 10.1029/PA005i001p00001 [35] Hughes C, Johnson M, Utting R, et al. Microbial control of bromocarbon concentrations in coastal waters of the western Antarctic Peninsula[J]. Marine Chemistry, 2013, 151: 35−46. doi: 10.1016/j.marchem.2013.01.007 [36] 高会旺, 姚小红, 郭志刚, 等. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325−1332.Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1325−1332. [37] Manley S L. Phytogenesis of halomethanes: A product of selection or a metabolic accident?[J]. Biogeochemistry, 2002, 60(2): 163−180. doi: 10.1023/A:1019859922489 [38] Theiler R, Cook J C, Hager L P, et al. Halohydrocarbon synthesis by bromoperoxidase[J]. Science, 1978, 202(4372): 1094−1096. doi: 10.1126/science.202.4372.1094 [39] Smythe-Wright D, Peckett C, Boswell S, et al. Controls on the production of organohalogens by phytoplankton: Effect of nitrate concentration and grazing[J]. Journal of Geophysical Research Biogeosciences, 2010, 115(G3): G03020.