留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西太平洋海域现场培养实验中挥发性卤代烃浓度的变化及其影响因素

韩钰 何真 刘珊珊 高旭旭 杨桂朋

韩钰,何真,刘珊珊,等. 西太平洋海域现场培养实验中挥发性卤代烃浓度的 变化及其影响因素[J]. 海洋学报,2020,42(2):1–9,doi:10.3969/j.issn.0253−4193.2020.02.001
引用本文: 韩钰,何真,刘珊珊,等. 西太平洋海域现场培养实验中挥发性卤代烃浓度的 变化及其影响因素[J]. 海洋学报,2020,42(2):1–9,doi:10.3969/j.issn.0253−4193.2020.02.001
Han Yu,He Zhen,Liu Shanshan, et al. Variation of volatile halocarbons concentrations and its influencing factors in incubation experiments in the western Pacific Ocean[J]. Haiyang Xuebao,2020, 42(2):1–9,doi:10.3969/j.issn.0253−4193.2020.02.001
Citation: Han Yu,He Zhen,Liu Shanshan, et al. Variation of volatile halocarbons concentrations and its influencing factors in incubation experiments in the western Pacific Ocean[J]. Haiyang Xuebao,2020, 42(2):1–9,doi:10.3969/j.issn.0253−4193.2020.02.001

西太平洋海域现场培养实验中挥发性卤代烃浓度的变化及其影响因素

doi: 10.3969/j.issn.0253-4193.2020.02.001
基金项目: 国家自然科学基金(41830534,41506088);国家重点研发计划项目(2016YFA0601300);中央高校基本科研业务费项目(201762030);海洋国家实验室“鳌山人才”卓越科学家计划项目(2015ASTP-OS12)。
详细信息
    作者简介:

    韩钰(1995—),女,山东省威海市人,主要从事海洋界面化学方面的研究。E-mail:yuhan_yu1@163.com

    通讯作者:

    杨桂朋(1963—),男,教授,博士生导师,教育部“长江学者”,主要从事海洋化学研究。E-mail:gpyang@ouc.edu.cn

  • 中图分类号: P734

Variation of volatile halocarbons concentrations and its influencing factors in incubation experiments in the western Pacific Ocean

  • 摘要: CH3I、CHCl3、C2HCl3和CH2Br2是挥发性卤代烃4种重要成分,对大气化学产生重要影响。于2018年10月在西太平洋进行船基现场培养实验,研究微量元素Fe (50 nmol/L)、酸化(pH=7.9)、酸化(pH=7.9)和微量元素Fe (50 nmol/L)耦合作用、微量元素Fe (50 nmol/L)和N/P (16∶1)耦合作用及沙尘(4 mg/L)对浮游植物释放CH3I、CHCl3、C2HCl3和CH2Br2含量的影响。结果表明,与对照组相比,实验组CH3I、C2HCl3和CH2Br2的释放均被不同程度抑制;CHCl3的释放除添加沙尘时表现抑制作用外,其他条件下均为促进作用;实验组培养周期内叶绿素a浓度较高,而营养盐浓度变化规律不明显。总的来说,酸化和微量元素Fe可能是影响浮游植物释放挥发性卤代烃的重要限制因素,沙尘对促进浮游植物生长繁殖的影响更为显著。
  • 图  1  对照组(M1)及实验组(M2~M6)培养桶中营养盐浓度变化

    Fig.  1  Variations in the concentrations of NO3-N and PO4-P in control group (M1) and experimental groups (M2−M6)

    图  2  对照组(M1)及实验组(M2~M6)培养桶中叶绿素a浓度变化

    Fig.  2  Variations in the concentrations of Chl a in control group (M1) and experimental groups (M2−M6)

    图  3  对照组(M1),Fe添加组(M2)及Fe和N/P(16∶1)添加组(M5)培养桶内CH3I (a)、 CHCl3 (b)、 C2HCl3 (c)和CH2Br2 (d)浓度变化

    Fig.  3  Variations in the concentrations of CH3I (a), CHCl3 (b), C2HCl3 (c) and CH2Br2 (d) in control group (M1), Fe addition group (M2) and Fe and N/P (16∶1) addition group (M5)

    图  4  对照组(M1),酸化组(M3)及Fe和酸化组(M4)培养桶内CH3I (a)、 CHCl3 (b)、 C2HCl3 (c)和CH2Br2 (d)浓度变化

    Fig.  4  Variations in the concentrations of CH3I (a), CHCl3 (b), C2HCl3 (c) and CH2Br2 (d) in control group (M1), acidification group (M3) and Fe and acidification group (M4)

    图  5  对照组(M1),沙尘添加组(M6)培养桶内CH3I (a)、 CHCl3 (b)、 C2HCl3 (c)和CH2Br2 (d)浓度变化

    Fig.  5  Variations in the concentrations of CH3I (a), CHCl3 (b), C2HCl3 (c) and CH2Br2 (d) in control group (M1) and dust addition group (M6)

    表  1  实验组和对照组添加物浓度及pH

    Tab.  1  Concentrations of additives added to M2 to M6, the condition of M1, and pH

    添加物 不同编号培养桶中添加物质浓度及pH
    M1M2M3M4M5M6
    NO3-N/µmol·L−12.99.6
    PO4-P/µmol·L−10.0750.6
    Fe/nmol·L−1N/A505050
    沙尘/mg·L−1N/A4
    pH8.27.97.9
      注:− 表示无添加物质和未测pH,N/A表示未检测到此物质。
    下载: 导出CSV
  • [1] Solomon S, Mills M, Heidt L E, et al. On the evaluation of ozone depletion potentials[J]. Journal of Geophysical Research Atmospheres, 1992, 97(D1): 825−842. doi: 10.1029/91JD02613
    [2] Cincinelli A, Pieri F, Zhang Y, et al. Compound Specific Isotope Analysis (CSIA) for chlorine and bromine: A review of techniques and applications to elucidate environmental sources and processes[J]. Environmental Pollution, 2012, 169(15): 112−127.
    [3] Yokouchi Y, Ooki A, Hashimoto S, et al. A Study on the Production and Emission of Marine-derived Volatile Halocarbons[M]. Tokyo: Terra Scientific Publishing Company, 2014: 1−25.
    [4] Lim Y K, Phang S M, Abdul Rahman N, et al. Halocarbon emissions from marine phytoplankton and climate change[J]. International Journal of Environmental Science and Technology, 2017, 14(6): 1355−1370. doi: 10.1007/s13762-016-1219-5
    [5] Carpenter L J, Jones C E, Dunk R M, et al. Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean[J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1805−1816. doi: 10.5194/acp-9-1805-2009
    [6] Scarratt M G, Moore R M. Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton[J]. Marine Chemistry, 1996, 54(3/4): 263−272.
    [7] Webb A L, Leedham-Elvidge E, Hughes C, et al. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community[J]. Biogeosciences, 2016, 13(15): 4595−4613. doi: 10.5194/bg-13-4595-2016
    [8] Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1704−1709. doi: 10.1073/pnas.0812721106
    [9] Kroeker K J, Kordas R L, Crim R N, et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13(11): 1419−1434. doi: 10.1111/j.1461-0248.2010.01518.x
    [10] Hopkins F E, Turner S M, Nightingale P D, et al. Ocean acidification and marine trace gas emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 760−765. doi: 10.1073/pnas.0907163107
    [11] 马剑敏, 王洁玉, 张婵, 等. 微量元素铁对3种水华藻类生长的影响[J]. 河南师范大学学报: 自然科学版, 2017, 45(5): 114−120.

    Ma Jianmin, Wang Jieyu, Zhang Chan, et al. Effect of trace element iron on the growth of three kinds of bloom-forming algae[J]. Journal of Henan Normal University: Natural Science Edition, 2017, 45(5): 114−120.
    [12] Rueler J G, Ades D R. The role of iron nutrition in photosynthesis and nitrogen assimilation in scenedesmus quadricauda (Chlorophyceae)[J]. Journal of Phycology, 2010, 23(3): 452−457.
    [13] Spiller S C, Castelfranco A M,Castelfranco P A. Effects of iron and oxygen on chlorophyll biosynthesis: Ⅰ. In vivo observations on iron and oxygen-deficient plants[J]. Plant Physiology, 1982, 69(1): 107−111. doi: 10.1104/pp.69.1.107
    [14] Moore R M, Wang L. The influence of iron fertilization on the fluxes of methyl halides and isoprene from ocean to atmosphere in the series experiment[J]. Deep-Sea Research, Part Ⅱ: Topical Studies in Oceanography, 2006, 53(20/22): 2389−2409.
    [15] 韩永翔, 宋连春, 赵天良, 等. 北太平洋地区沙尘沉降与海洋生物兴衰的关系[J]. 中国环境科学, 2006, 26(2): 157−160. doi: 10.3321/j.issn:1000-6923.2006.02.008

    Han Yongxiang, Song Lianchun, Zhao Tianliang, et al. The relationship between continental dust and marine phytoplankton in the North Pacific[J]. China Environmental Science, 2006, 26(2): 157−160. doi: 10.3321/j.issn:1000-6923.2006.02.008
    [16] 徐军田, 高坤山. 二氧化碳和阳光紫外辐射对龙须菜生长和光合生理的影响[J]. 海洋学报, 2010, 32(5): 144−151.

    Xu Juntian, Gao Kunshan. The influence of carbon dioxide and solar UVR on the growth, photosynthesis and pigments contents of Gracilaria lemaneiformis[J]. Haiyang Xuebao, 2010, 32(5): 144−151.
    [17] Guieu C, Dulac F, Desboeufs K, et al. Large clean mesocosms and simulated deposition: A new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs[J]. Biogeosciences, 2010, 7(9): 2765−2784. doi: 10.5194/bg-7-2765-2010
    [18] 杨桂朋, 尹士序, 陆小兰, 等. 吹扫-捕集气相色谱法测定海水中挥发性卤代烃[J]. 中国海洋大学学报, 2007, 37(2): 299−304.

    Yang Guipeng, Yin Shixu, Lu Xiaolan, et al. Determination of volatile halocarbons in seawater using purge-and-trap gas chromatography[J]. Periodical of Ocean University of China, 2007, 37(2): 299−304.
    [19] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. 3rd ed. Weinheim: WILEY-VCH Verlag GmbH, 1999: 160−223.
    [20] 张洪海. 中国东海、黄海DMS和DMSP的生物地球化学研究[D]. 青岛: 中国海洋大学, 2009: 54-56.

    Zhang Honghai. Studies on biogeochemistry of DMS and DMSP in the East China Sea and the Yellow Sea[D]. Qingdao: Ocean University of China, 2009: 54−56.
    [21] 衣晓燕, 黄有松, 陈宏举, 等. 基于围隔实验的沙尘添加对西北太平洋寡营养海区小型浮游植物群落结构的影响[J]. 中国海洋大学学报, 2017, 47(5): 27−33.

    Yi Xiaoyan, Huang Yousong, Chen Hongju, et al. Effects of dust deposition on micro-phytoplankton community in an oligotrophic zone of Northwest Pacific based on an enclosure experiment[J]. Periodical of Ocean University of China, 2017, 47(5): 27−33.
    [22] Mohamed C A R, Sabuti A A, Saili N A. Atmospheric deposition of 210Po and 210Pb in Malaysian waters during haze events[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 297(2): 257−263. doi: 10.1007/s10967-012-2394-6
    [23] 侯继灵. 不同氮源和铁对浮游植物生长影响的围隔实验研究[D]. 青岛: 中国海洋大学, 2006: 72.

    Hou Jiling. Influence of nitrogen nutriments and iron to the growth of phytoplankton in mesocosm experiments[D]. Qingdao: Ocean University of China, 2006: 72.
    [24] 孙萍. 东海围隔生态系内浮游植物对营养盐的响应[D]. 青岛: 国家海洋局第一海洋研究所, 2007: 76.

    Sun Ping. Studies on the response of phytoplankton to nutrient input by mesocosm experiments in East China Sea[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2007: 76.
    [25] 栾学泉, 苏忠亮. 海洋藻类对海洋酸化响应的研究进展[J]. 山东化工, 2015, 44(15): 80−84. doi: 10.3969/j.issn.1008-021X.2015.15.031

    Luan Xuequan, Su Zhongliang. Research progress on response of marine algae under ocean acidification[J]. Shandong Chemical Industry, 2015, 44(15): 80−84. doi: 10.3969/j.issn.1008-021X.2015.15.031
    [26] 徐智广, 邹定辉, 张鑫, 等. CO2和硝氮加富对龙须菜(Gracilaria lemaneiformis)生长、生化组分和营养盐吸收的影响[J]. 生态学报, 2008, 28(8): 3752−3759.

    Xu Zhiguang, Zou Dinghui, Zhang xin, et al. Effects of increased atmospheric CO2 and N supply on growth, biochemical compositions and uptake of nutrients in Gracilaria lemaneiformis (Rhodophyta)[J]. Acta Ecological Sinica, 2008, 28(8): 3752−3759.
    [27] 孔赟, 邹培, 宋黎明, 等. 铁对藻类生长及藻毒素合成影响研究进展[J]. 应用生态学报, 2014, 25(5): 1533−1540.

    Kong Yun, Zou Pei, Song Liming, et al. Effects of iron on the algae growth and microcystin synthesis: A review[J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1533−1540.
    [28] 王洁玉, 陈艳, 李杲光, 等. 3种微量元素对小球藻和小环藻生长的影响[J]. 环境科学与技术, 2018, 41(9): 55−60.

    Wang Jieyu, Chen Yan, Li Gaoguang, et al. Effects of three kinds of trace element on growth of Chlorella vulgaris and Cyclotella sp.[J]. Environmental Science & Technology, 2018, 41(9): 55−60.
    [29] Tan S, Shi G, Shi J, et al. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008[J]. Journal of Geophysical Research Biogeosciences, 2015, 116(G2): 66−74.
    [30] 丁琼瑶. 东海、黄海碘甲烷的浓度分布与海–气通量及藻类释放研究[D]. 青岛: 中国海洋大学, 2015.

    Ding Qiongyao. The distributions and sea-to-air fluxes of methyl iodide and production by marine phytoplankton[D]. Qingdao: Ocean University of China, 2015.
    [31] Hopkins F E, Kimmance S A, Stephens J A, et al. Response of halocarbons to ocean acidification in the Arctic[J]. Biogeosciences, 2013, 10(4): 2331−2345. doi: 10.5194/bg-10-2331-2013
    [32] 李雁宾, 韩秀荣, 胡跃诚, 等. 营养盐对东海浮游植物生长影响的现场培养实验[J]. 海洋环境科学, 2005, 27(2): 113−117.

    Li Yanbin, Han Xiurong, Hu Yuecheng, et al. Test on effects of nutrients on growth of phytoplankton in East China Sea in situ[J]. Marine Environmental Science, 2005, 27(2): 113−117.
    [33] Caldeira K, Wickett M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365−365. doi: 10.1038/425365a
    [34] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1−13. doi: 10.1029/PA005i001p00001
    [35] Hughes C, Johnson M, Utting R, et al. Microbial control of bromocarbon concentrations in coastal waters of the western Antarctic Peninsula[J]. Marine Chemistry, 2013, 151: 35−46. doi: 10.1016/j.marchem.2013.01.007
    [36] 高会旺, 姚小红, 郭志刚, 等. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325−1332.

    Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1325−1332.
    [37] Manley S L. Phytogenesis of halomethanes: A product of selection or a metabolic accident?[J]. Biogeochemistry, 2002, 60(2): 163−180. doi: 10.1023/A:1019859922489
    [38] Theiler R, Cook J C, Hager L P, et al. Halohydrocarbon synthesis by bromoperoxidase[J]. Science, 1978, 202(4372): 1094−1096. doi: 10.1126/science.202.4372.1094
    [39] Smythe-Wright D, Peckett C, Boswell S, et al. Controls on the production of organohalogens by phytoplankton: Effect of nitrate concentration and grazing[J]. Journal of Geophysical Research Biogeosciences, 2010, 115(G3): G03020.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  20
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-07-08
  • 网络出版日期:  2020-11-13
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回