留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舟山渔港风暴潮模拟分析

孙志林 钟汕虹 王辰 涂文荣 纪汗青

孙志林,钟汕虹,王辰,等. 舟山渔港风暴潮模拟分析[J]. 海洋学报,2020,42(1):136–143,doi:10.3969/j.issn.0253−4193.2020.01.014
引用本文: 孙志林,钟汕虹,王辰,等. 舟山渔港风暴潮模拟分析[J]. 海洋学报,2020,42(1):136–143,doi:10.3969/j.issn.0253−4193.2020.01.014
Sun Zhilin,Zhong Shanhong,Wang Chen, et al. Simulation and analysis of storm surge at Zhoushan fishing port[J]. Haiyang Xuebao,2020, 42(1):136–143,doi:10.3969/j.issn.0253−4193.2020.01.014
Citation: Sun Zhilin,Zhong Shanhong,Wang Chen, et al. Simulation and analysis of storm surge at Zhoushan fishing port[J]. Haiyang Xuebao,2020, 42(1):136–143,doi:10.3969/j.issn.0253−4193.2020.01.014

舟山渔港风暴潮模拟分析

doi: 10.3969/j.issn.0253-4193.2020.01.014
基金项目: 国家自然科学基金重大研究计划项目(91647209);国家重点研发计划(2016YFC0402305-02)。
详细信息
    作者简介:

    钟汕虹:孙志林(1956—),男,教授,主要从事水动力数值模拟研究。E-mail:21634090@zju.edu.cn

  • 中图分类号: P731.2

Simulation and analysis of storm surge at Zhoushan fishing port

  • 摘要: 渔港风暴潮研究对防灾减灾具有重要意义。本文构建了舟山海域嵌套网格的风暴潮模型,经天文潮与风暴潮实测资料验证效果良好。设计5个方向共14条台风路径,计算了2017年8月8−12日大潮期12~17级台风下舟山渔港的风暴潮位。结果表明,由于向岸风作用南侧SE向比北侧E向登陆台风所造成的最高风暴潮位高35.7%,差值可达82 cm;对于两端通海的舟山渔港,南侧0.5R处登陆的SE向台风,风向与东口门朝向一致而跟渔港走向斜交,有利于水体进入并滞留,此时风暴潮位最高。南侧12级台风下ESE、SE、SSE发生漫堤,而北侧登陆台风无漫堤风险,沉降等原因造成海堤防台能力两头低于中段;数值试验显示,若在小干岛东侧设置丁坝,可将17级台风作用下的漫堤概率由26.23%减为10.66%。
  • 图  1  计算区域网格

    Fig.  1  Grid of computational area

    图  2  测点A天文大潮验证

    Fig.  2  Verification of astronomic spring tide at Station A

    图  3  测点A天文小潮验证

    Fig.  3  Verification of astronomic neap tide at Station A

    图  4  1211号台风期间定海站风暴潮位验证

    Fig.  4  Verification of storm tide at Dinghai Station during Typhoon 1211

    图  5  台风模拟路径

    Fig.  5  Typhoon simulation paths

    图  6  港内风暴潮位与风速

    Fig.  6  Storm tide and wind velocity at the fishing port

    图  7  海堤的防台等级

    Fig.  7  The defense level of sea dike

    图  8  东南向路径

    Fig.  8  The southeast path

    图  9  台风登陆时刻渔港流速与风向

    Fig.  9  Tide and wind velocity at the typhoon landing moment

    图  10  丁坝对风暴潮位的削弱效果

    Fig.  10  The weakening effect of the spur dike on the storm tide level

  • [1] Sebastian A, Proft J, Dietrich J C, et al. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN + ADCIRC model[J]. Coastal Engineering, 2014, 88: 171−181. doi: 10.1016/j.coastaleng.2014.03.002
    [2] Dietrich, J C, Zijlema M, Westerink J J, et al. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations[J]. Coastal Engineering, 2011, 58(1): 45−65. doi: 10.1016/j.coastaleng.2010.08.001
    [3] Xie Dongmei, Zou Qingping, Cannon J W. Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm[J]. Water Science and Engineering, 2016, 9(1): 33−41. doi: 10.1016/j.wse.2016.02.003
    [4] Rego J L, Li Chunyan. Nonlinear terms in storm surge predictions: effect of tide and shelf geometry with case study from Hurricane Rita[J]. Journal of Geophysical Research, 2010, 115(C6): C06020.
    [5] Zhou Jifu, Liu Jinlong. Estimation of extreme hydrodynamic environments of Puti Island wind farm in Bohai Sea[J]. Procedia IUTAM, 2017, 25: 74−81. doi: 10.1016/j.piutam.2017.09.012
    [6] Xie Lian, Liu Huiqing, Peng Machuan. The effect of wave-current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989[J]. Ocean Modelling, 2008, 20(3): 252−269. doi: 10.1016/j.ocemod.2007.10.001
    [7] 孙志林, 纪汗青, 方诗标, 等. 台风过境方位对洞头渔港增水的影响[J]. 水力发电学报, 2018, 37(1): 70−78. doi: 10.11660/slfdxb.20180108

    Sun Zhilin, Ji Hanqing, Fang Shibiao, et al. Influence of typhoon moving directions on storm surges at Dongtou fishing port[J]. Journal of Hydroelectric Engineering, 2018, 37(1): 70−78. doi: 10.11660/slfdxb.20180108
    [8] 匡翠萍, 宋竑霖, 顾杰, 等. 黄骅港风生流及紊动的三维特性[J]. 浙江大学学报: 工学版, 2017, 51(1): 38−45, 67.

    Kuang Cuiping, Song Honglin, Gu Jie, et al. Three-dimensional characteristics of wind-induced current and turbulence at Huanghua Harbor[J]. Journal of Zhejiang University: Engineering Science, 2017, 51(1): 38−45, 67.
    [9] Luijendijk A P, Ranasinghe R, de Schipper M A, et al. The initial morphological response of the sand engine: a process-based modelling study[J]. Coastal Engineering, 2017, 119: 1−14. doi: 10.1016/j.coastaleng.2016.09.005
    [10] Hope M E, Westerink J J, Kennedy A B, et al. Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4424−4460. doi: 10.1002/jgrc.20314
    [11] Kennedy A B, Gravois U, Zachry B C, et al. Origin of the Hurricane Ike forerunner surge[J]. Geophysical Research Letters, 2011, 38(8): L08608.
    [12] Liu Xing, Jiang Wensheng, Yang Bo, et al. Numerical study on factors influencing typhoon-induced storm surge distribution in Zhanjiang Harbor[J]. Estuarine, Coastal and Shelf Science, 2018, 215: 39−51. doi: 10.1016/j.ecss.2018.09.019
    [13] Wang Yuxing, Duan Yihong, Guo Zhixing, et al. Deterministic-probabilistic approach for probable maximum typhoon-induced storm surge evaluation over Wenchang in the South China Sea[J]. Estuarine, Coastal and Shelf Science, 2018, 214: 161−172. doi: 10.1016/j.ecss.2018.09.025
    [14] Wang Yanping, Mao Xinyan, Jiang Wensheng. Long-term hazard analysis of destructive storm surges using the ADCIRC- SWAN model: a case study of Bohai Sea, China[J]. International Journal of Applied Earth Observation & Geoinformation, 2018, 73: 52−62.
    [15] Luo Yao, Shi Hui, Wang Dongxiao. Multivariate analysis of extreme storm surges in a semi-enclosed bay[J]. Ocean Science Discussions, 2017, 14(2): 1−18.
    [16] 刘永玲, 冯建龙, 江文胜, 等. 热带气旋资料长度对风暴潮危险性评估结果的影响[J]. 海洋学报, 2016, 38(3): 60−70.

    Liu Yongling, Feng Jianlong, Jiang Wensheng, et al. Effects of a tropical cyclone data sets length on the result of risk assessment of storm surge[J]. Haiyang Xuebao, 2016, 38(3): 60−70.
    [17] 孙志林, 黄森军, 焦建格, 等. 河口区径流对台风暴潮影响研究[J]. 天津大学学报: 自然科学与工程技术版, 2017, 50(5): 519−526.

    Sun Zhilin, Huang Senjun, Jiao Jiange, et al. Effect of runoff on typhoon storm surge in estuaries[J]. Journal of Tianjin University: Science and Technology, 2017, 50(5): 519−526.
    [18] Sun Zhilin, Huang Senjun, Jiao Jiange, et al. Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China[J]. Water Science and Engineering, 2017, 10(1): 59−69. doi: 10.1016/j.wse.2017.03.003
    [19] Lyddon C, Brown J M, Leonardi N, et al. Uncertainty in estuarine extreme water level predictions due to surge-tide interaction[J]. PLoS ONE, 2018, 13(10): e0206200. doi: 10.1371/journal.pone.0206200
    [20] 刘睿哲, 朱庆勇, 倪培桐. 珠江河口地区风暴潮增水过程数值模拟[J]. 广东水利水电, 2018(4): 6−10. doi: 10.11905/j.issn.1008-0112.2018.04.002

    Liu Ruizhe, Zhu Qingyong, Ni Peitong. Numerical simulation of storm surge process in Pearl River Estuary[J]. Guangdong Water Resources & Hydropower, 2018(4): 6−10. doi: 10.11905/j.issn.1008-0112.2018.04.002
    [21] Lyddon C, Brown J M, Leonardi N, et al. Flood hazard assessment for a hyper-tidal estuary as a function of tide-surge-morphology interaction[J]. Estuaries & Coasts, 2018, 41(6): 1565−1586.
    [22] Deltares. Delft3D FLOW User Manual[M]. The Netherlands: Deltares, 2014.
    [23] Deltares. Delft3D TIDE User Manual[M]. The Netherlands: Deltares, 2014.
    [24] 王喜年. 风暴潮预报知识讲座第五讲: 风暴潮预报技术(2)[J]. 海洋预报, 2002, 19(2): 64−70. doi: 10.3969/j.issn.1003-0239.2002.02.010

    Wang Xinian. The lecture of storm surge forecast fifth: the storm surge forecasting technology (2)[J]. Marine Forecasts, 2002, 19(2): 64−70. doi: 10.3969/j.issn.1003-0239.2002.02.010
    [25] 王喜年. 风暴潮讲座第三讲: 风暴潮数值模式计算中气压场和风场的处理[J]. 海洋预报, 1986, 3(4): 56−64. doi: 10.11737/j.issn.1003-0239.1986.04.008

    Wang Xinian. The lecture of storm surge forecast third: treatment of pressure field and wind field in storm surge numerical model calculation[J]. Marine Forecasts, 1986, 3(4): 56−64. doi: 10.11737/j.issn.1003-0239.1986.04.008
  • 加载中
图(10)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  85
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-10
  • 修回日期:  2019-03-02
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-01-25

目录

    /

    返回文章
    返回