留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

协同主动学习和半监督方法的海冰图像分类

韩彦岭 赵耀 周汝雁 张云 王静 杨树瑚 洪中华

韩彦岭,赵耀,周汝雁,等. 协同主动学习和半监督方法的海冰图像分类[J]. 海洋学报,2020,42(1):123–135,doi:10.3969/j.issn.0253−4193.2020.01.013
引用本文: 韩彦岭,赵耀,周汝雁,等. 协同主动学习和半监督方法的海冰图像分类[J]. 海洋学报,2020,42(1):123–135,doi:10.3969/j.issn.0253−4193. 2020.01.013
Han Yanling,Zhao Yao,Zhou Ruyan, et al. Cooperative active learning and semi-supervised method for sea ice image classification[J]. Haiyang Xuebao,2020, 42(1):123–135,doi:10.3969/j.issn.0253−4193.2020.01.013
Citation: Han Yanling,Zhao Yao,Zhou Ruyan, et al. Cooperative active learning and semi-supervised method for sea ice image classification[J]. Haiyang Xuebao,2020, 42(1):123–135,doi:10.3969/j.issn.0253−4193.2020.01.013

协同主动学习和半监督方法的海冰图像分类

doi: 10.3969/j.issn.0253-4193.2020.01.013
基金项目: 国家自然科学基金(41376178,41401489,41506213);上海市科学技术委员会地方院校能力建设项目(11510501300)。
详细信息
    作者简介:

    韩彦岭(1975—),女,河北省石家庄市人,副教授,主要从事遥感图像处理和模式识别等方面研究。E-mail:ylhan@shou.edu.cn

    通讯作者:

    周汝雁(1970—),女,河南省郑州市人,副教授,主要从事智能控制,数据挖掘等方面研究。E-mail:ryzhou@shou.edu.cn

  • 中图分类号: TP751

Cooperative active learning and semi-supervised method for sea ice image classification

  • 摘要: 海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和次优标号、自组织映射神经网络以及增强的聚类多样性算法来选择兼具不确定性和差异性的样本参与训练;在半监督学习部分,利用直推式支持向量机,并且融合主动学习思想从大量未标签样本中选取相对可靠且包含一定信息量的样本进行迭代训练;然后协同主动学习分类结果和半监督分类结果,通过一致性验证保证所加入伪标签样本的正确性。为了验证方法的有效性,分别采用巴芬湾地区30 m分辨率的Hyperion高光谱数据(验证数据为15 m分辨率的Landsat-8数据)和辽东湾地区15 m分辨率的Landsat-8数据(验证数据为4.77 m分辨率的Google Earth数据)进行海冰分类实验。实验结果表明,相对其他传统方法,该协同分类方法可以在只有少量标签样本的情况下,充分利用大量未标签样本中包含的信息,实现快速收敛,并获得较高的分类精度(两个实验的总体精度分别为90.003%和93.288%),适用于海冰遥感图像分类。
  • 图  1  CATSVM方法的流程图

    Fig.  1  Flowchart of CATSVM method

    图  2  带有标签样本的高光谱图像(a),a中部分区域的放大图(b)

    a图是由R:159,G:194,B:208合成的假彩色图像

    Fig.  2  Hyperspectral image marked with labeled samples(a), b is partial hyperspectral image taken from a

    a is false color image composed of R:159,G:194 and B:208

    图  3  Landsat-8实验数据图像(a),实验中标记样本分布(b)

    Fig.  3  Landsat-8 image(a), and distribution of labeled samples (b)

    图  4  巴芬湾数据CATSVM与AL方法总体分类精度对比

    Fig.  4  Average classification accuracy for CATSVM and AL methods of the Baffin Bay data

    图  5  巴芬湾数据CATSVM方法和其他AL+SSL方法的总体分类精度对比

    Fig.  5  Average classification accuracy between CATSVM and other AL+SSL methods of the Baffin Bay data

    图  6  原始高光谱图像(a),Landsat-8验证数据类别图(b),CATSVM算法的分类结果图(c)

    a图是由波段红:159,绿:194,蓝:208合成的假彩色图像

    Fig.  6  Hyperspectral image (a), result of the classification of the Landsat-8 data (b), result of the classification of CATSVM algorithm (c)

    a is false color image composed of R:159, G:194 and B:208

    图  7  辽东湾数据CATSVM与AL方法总体分类精度对比

    Fig.  7  Average classification accuracy for CATSVM and AL methods of the Liaodong Bay data

    图  8  辽东湾数据CATSVM方法和其他AL+SSL方法的总体分类精度对比

    Fig.  8  Average classification accuracy between CATSVM and other AL+SSL methods of the Liaodong Bay data

    图  9  原始Landsat-8海冰图像(a),Google Earth验证数据类别(b),CATSVM方法的分类结果(c)

    Fig.  9  Landsat-8 image(a), result of the classification of the Google Earth data (b), result of the classification of CATSVM algorithm (c)

    表  1  去除的Hyperion波段

    Tab.  1  The Hyperion bands that been removed

    去除波段波长范围/nm
    1~7356~416
    58~78936~923
    121~1271 356~1 426
    167~1781 820~1 931
    224~2422 395~2 578
    下载: 导出CSV

    表  2  巴芬湾数据中每个类别的初始训练样本集L和未标签样本集U中的样本数量

    Tab.  2  Number of samples for each class in the initial training set (L), and in the unlabeled pool (U) for the Baffin Bay data set

    类别LU总计
    厚冰3540543
    薄冰3536539
    海水3593596
    总计91 669 1 678
    下载: 导出CSV

    表  3  辽东湾数据中每个类别的初始训练样本集L和未标签样本集U中的样本数量

    Tab.  3  Number of samples for each class in the initial training set (L), and in the unlabeled pool (U) for the Liaodong Bay data set

    类别LU总计
    白冰3427430
    灰冰3420423
    灰白冰3447450
    总计91 296 1 303
    下载: 导出CSV

    表  4  不同主动学习方法采样数量

    Tab.  4  Number of samples chosen by the different active learning methods

    方法mh
    MCLU-ECBD123
    BVSB-ECBD123
    BVSB 3
    ENTROPY 3
    下载: 导出CSV

    表  5  CATSVM方法和其他方法的最终Kappa系数结果

    Tab.  5  The final Kappa coefficient result of the CATSVM method and other methods

    分类方法Kappa系数
    本文所提方法CATSVM0.697
    主动学习方法MCLU-ECBD0.676
    BVSB-ECBD0.658
    ENTROPY0.497
    BVSB0.445
    其他AL+SSL方法CASSL0.687
    BVSB-ECBD-TSVM0.673
    AL+LCR_MD SSL0.660
    下载: 导出CSV

    表  6  CATSVM方法和其他方法的最终Kappa系数结果

    Tab.  6  The final Kappa coefficient result of the CATSVM method and other methods

    分类方法Kappa
    本文所提方法CATSVM0.907
    主动学习方法MCLU-ECBD0.826
    BVSB-ECBD0.826
    ENTROPY0.826
    BVSB0.826
    其他AL+SSL方法CASSL0.881
    BVSB-ECBD-TSVM0.828
    AL+LCR_MD SSL0.827
    下载: 导出CSV
  • [1] 张晰, 张杰, 孟俊敏, 等. 基于极化散射特征的极化合成孔径雷达海冰分类方法研究: 以渤海海冰分类为例[J]. 海洋学报, 2013, 35(5): 95−101.

    Zhang Xi, Zhang Jie, Meng Junmin, et al. Polarimetric scattering characteristics based sea ice types classification by polarimetric synthetic aperture radar: taking sea ice in the Bohai Sea for example[J]. Haiyang Xuebao, 2013, 35(5): 95−101.
    [2] Liu Rujie, Wang Yuehong, Baba T, et al. SVM-based active feedback in image retrieval using clustering and unlabeled data[J]. Pattern Recognition, 2008, 41(8): 2645−2655. doi: 10.1016/j.patcog.2008.01.023
    [3] Joshi A J, Porikli F, Papanikolopoulos N. Multi-class active learning for image classification[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 2372−2379.
    [4] Demir B, Persello C, Bruzzone L. Batch-mode active-learning methods for the interactive classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1014−1031. doi: 10.1109/TGRS.2010.2072929
    [5] 陈荣, 曹永锋, 孙洪. 基于主动学习和半监督学习的多类图像分类[J]. 自动化学报, 2011, 37(8): 954−962.

    Chen Rong, Cao Yongfeng, Sun Hong. Multi-class image classification with active learning and semi-supervised learning[J]. Acta Automatica Sinica, 2011, 37(8): 954−962.
    [6] Patra S, Bruzzone L. A fast cluster-assumption based active-learning technique for classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1617−1626. doi: 10.1109/TGRS.2010.2083673
    [7] Patra S, Bruzzone L. A novel SOM-SVM-Based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6899−6910. doi: 10.1109/TGRS.2014.2305516
    [8] Vapnik V, Sterin A. On structural risk minimization or overall risk in a problem of pattern recognition[J]. Automation and Remote Control, 1977, 10(3): 1495−1503.
    [9] Zhou Zhihua, Li Ming. Semi-supervised learning by disagreement[J]. Knowledge and Information Systems, 2010, 24(3): 415−439. doi: 10.1007/s10115-009-0209-z
    [10] Bruzzone L, Chi Mingmin, Marconcini M. A novel transductive SVM for semisupervised classification of remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3363−3373. doi: 10.1109/TGRS.2006.877950
    [11] Leng Yan, Xu Xinyan, Qi Guanghui. Combining active learning and semi-supervised learning to construct SVM classifier[J]. Knowledge-Based Systems, 2013, 44: 121−131. doi: 10.1016/j.knosys.2013.01.032
    [12] Wan Lunjun, Tang Ke, Li Mingzhi, et al. Collaborative active and semisupervised learning for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2384−2396. doi: 10.1109/TGRS.2014.2359933
    [13] Han Yanling, Ren Jing, Hong Zhonghua, et al. Active learning algorithms for the classification of hyperspectral sea ice images[J]. Mathematical Problems in Engineering, 2015, 2015: 124601.
    [14] Joachims T. Transductive inference for text classification using support vector machines[C]//Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999: 200−209.
    [15] Persello C, Bruzzone L. Active and semisupervised learning for the classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6937−6956. doi: 10.1109/TGRS.2014.2305805
    [16] Barry P, Segal C, Carman S. EO-1/Hyperion science data user’s guide[R]. CAGE No. 11982, Redondo Beach: TRW, 2001.
    [17] 苏红军, 杜培军, 盛业华. 高光谱影像波段选择算法研究[J]. 计算机应用研究, 2008, 25(4): 1093−1096. doi: 10.3969/j.issn.1001-3695.2008.04.039

    Su Hongjun, Du Peijun, Sheng Yehua. Study on band selection algorithms of hyperspectral image data[J]. Application Research of Computers, 2008, 25(4): 1093−1096. doi: 10.3969/j.issn.1001-3695.2008.04.039
    [18] Du Qian, Yang He. Similarity-based unsupervised band selection for hyperspectral image analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564−568. doi: 10.1109/LGRS.2008.2000619
    [19] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.
    [20] Han Yanling, Li Peng, Zhang Yun, et al. Combining active learning and transductive support vector machines for sea ice detection[J]. Journal of Applied Remote Sensing, 2018, 12(2): 026016.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  83
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-05-10
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-01-25

目录

    /

    返回文章
    返回