留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究

刘森 邹斌 石立坚 崔艳荣

刘森,邹斌,石立坚,等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报,2020,42(1):113–122,doi:10.3969/j.issn.0253−4193.2020.01.012
引用本文: 刘森,邹斌,石立坚,等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报,2020,42(1):113–122,doi:10.3969/j.issn. 0253−4193.2020.01.012
Liu Sen,Zou Bin,Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao,2020, 42(1):113–122,doi:10.3969/j.issn.0253−4193.2020.01.012
Citation: Liu Sen,Zou Bin,Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao,2020, 42(1):113–122,doi:10.3969/j.issn.0253−4193.2020.01.012

基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究

doi: 10.3969/j.issn.0253-4193.2020.01.012
基金项目: 国家重点研发计划课题(2016YFC1402704);北极区域观测预报系统集成与应用示范(2018YFC1407206)。
详细信息
    作者简介:

    刘森(1991—),女,辽宁省抚顺市人,主要从事海洋遥感研究。E-mail:1027830487@qq.com

    通讯作者:

    邹斌,研究员,主要从事海洋遥感应用研究。E-mail:zoubin@mail.nsoas.org.cn

  • 中图分类号: P731.15;P717

Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data

  • 摘要: 极区海冰影响大气和海洋环流,对全球气候变化起着重要的作用。海冰密集度是表征海冰时空变化特征的重要参数之一。本文研究了利用FY-3C微波扫描辐射计亮温数据反演极区海冰密集度的方法。经过时空匹配、线性回归,修正了FY-3C微波辐射计亮温数据。使用两种天气滤波器和海冰掩模滤除了大气影响所造成的开阔海域虚假海冰;使用最小密集度模板去除陆地污染效应。通过计算2016年、2017年极区海冰面积及范围两个参数,对得到的海冰密集度产品进行了验证,两年的海冰范围和面积趋势基本与NSIDC产品一致,平均差异小于3%。本研究结果为发布我国自主卫星的极区海冰密集度业务化产品奠定了基础,制作的产品可保障面临中断的40多年极区海冰记录的连续性。
  • 图  1  2016年3月19H通道FY-3C与F17亮温对比散点图

    Fig.  1  Brightness temperature scatter plot at 19H of FY-3C and F17 on March, 2016

    图  2  微波天线的粗分辨率对海岸线附近亮温的影响示意图(a),在程序中使用7×7阵列以减少陆地到海洋的溢出效应(b)(据参考文献[19])

    Fig.  2  Schematic illustrating the effect of the coarse resolution of the microwave antenna on brightness temperatures near a coastline (a), and seven-by-seven array used in the procedure to reduce the land-to-ocean spillover effect (b) (refer to reference [19])

    图  3  2017年8月26日北极天气效应去除和未去除的海冰密集度结果

    a. 未使用天气滤波器;b. 使用GR(36.5/18.7)天气滤波器;c. 使用两种天气滤波器;d. 使用两种天气滤波器和海冰掩模

    Fig.  3  Sea ice concentration result with and without weather filter of north polar zone on August 26, 2017

    a. Result without using weather filter; b. result with GR (36.5/18.7) weather filter; c. result with two weather filter; d. result with two weather filter and ice mask

    图  4  2017年8月26日北极海冰密集度差异

    a. 未去除陆地污染与NSIDC产品的差异;b. 去除陆地污染后与NSIDC产品的差异

    Fig.  4  Ice concentration difference on August 26, 2017

    a. Subtract NSIDC from result with land-to-ocean spillover; b. difference between reduced the land-to-ocean spillover effect and NSIDC

    图  5  2016−2017年北极(a)和南极(b)海冰范围和面积时间序列比较

    Fig.  5  Daily averaged time series of total Arctic (a) and Antarctic (b) ice extent and area for 2016−2017

    图  6  2016−2017年北半球(a)和南半球(b)FY-3C和F17海冰范围和面积的每日百分比差异的时间序列

    百分比差异计算为100%(FY−F17)/F17

    Fig.  6  Time series of the daily percent differences between FY-3C and F17 sea ice extents and areas of the Northern Hemisphere (a) and Southern Hemisphere (b) for 2016−2017

    Percent differences are calculated as 100%(FY−F17)/F17

    表  1  F17与FY-3C参数比较

    Tab.  1  Parameters comparison of F17 and FY-3C

    参数DMSP-F17FY-3C
    轨道高度/km850836
    倾斜角度/(°)98.898.8
    轨道周期/min102101
    升交点过境地方时约5:31 pm1:40 pm−2:00 pm
    算法频率/GHz19.3, 37.0, 22.218.7, 36.5, 23.8
    入射角/(°)53.145
    足迹大小/km70×45, 38×30, 60×4030×50, 18×30, 27×45
    幅宽/km1 7001 400
    下载: 导出CSV

    表  2  定标系数

    Tab.  2  Calibration coefficients

    月份斜率
    19V19H23V37V37H
    10.890.930.930.940.97
    20.9 0.940.950.940.98
    30.9 0.940.950.950.98
    40.910.940.940.960.98
    50.9 0.930.940.960.98
    60.910.940.940.950.98
    70.890.920.890.940.98
    80.890.930.920.940.98
    90.9 0.930.930.950.99
    10 0.9 0.930.940.960.99
    11 0.910.940.950.960.99
    12 0.9 0.930.950.950.97
    月份截距
    19V19H23V37V37H
    126.1214.8117.3 16.319.33
    223.7312.0812.6516.647.42
    322.9111.9812.9613.716.82
    423 12.7115.1712.1 7.37
    523.7314.7716.8213.628.12
    623.7714.7217.2415.997.67
    728.3 18.3 26.7917.827.85
    826.3115.6721.6116.677.26
    924.9515.3317.5615.496.39
    10 23.3614.9215.6 13.516.27
    11 22.1712.7912.8 12.256.03
    12 24 13.2613.5915.3 8.72
    下载: 导出CSV

    表  3  南北半球开阔水域及不同冰型的F17系点值

    Tab.  3  F17 TPs for open water and different ice types in the Northern Hemisphere and Southern Hemisphere

    北半球F17系点/K南半球F17系点/K
    19V OW184.919V OW184.9
    19H OW113.419H OW113.4
    37V OW207.137V OW207.1
    19V FYI248.419V冰型A253.1
    19H FYI232.019H冰型A237.8
    37V FYI242.337V冰型A246.6
    19V MYI220.719V冰型B244.0
    19H MYI196.019H冰型B211.9
    37V MYI188.537V冰型B212.6
      注:OW表示开阔水域,FYI表示第一年冰,MYI表示多年冰。冰型A与北冰洋的第一年冰具有相似的微波特性,但冰型B与多年冰比是一种不同的冰型,可能第一年冰含有重型雪盖。
    下载: 导出CSV

    表  4  2016–2017年南北极海冰范围和面积与NSIDC差异的统计分析

    Tab.  4  Statistical analysis of the total Arctic and Antarctic ice extent and area difference for 2016–2017

    海冰范围均
    方根误差/106 km2
    海冰面积均
    方根误差/106 km2
    海冰范围
    相关系数
    海冰面积
    相关系数
    北极0.270 00.141 50.998 40.999 6
    南极0.112 00.153 50.999 90.999 6
    下载: 导出CSV
  • [1] Cheung H H N, Keenlyside N, Omrani N E, et al. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate[J]. Advances in Atmospheric Sciences, 2018, 35(1): 38−51. doi: 10.1007/s00376-017-7156-5
    [2] 柯长青, 彭海涛, 孙波, 等. 2002−2011年北极海冰时空变化分析[J]. 遥感学报, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044

    Ke Changqing, Peng Haitao, Sun Bo, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011[J]. Journal of Remote Sensing, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044
    [3] Curry J A, Schramm J L, Ebert E E. Sea ice-albedo climate feedback mechanism[J]. Journal of Climate, 1995, 8(2): 240−247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [4] 冯士筰, 李凤歧, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999.
    [5] 刘艳霞, 王泽民, 刘婷婷. 1979−2014年南北极海冰变化特征分析[J]. 遥感信息, 2016, 31(2): 24−29. doi: 10.3969/j.issn.1000-3177.2016.02.005

    Liu Yanxia, Wang Zemin, Liu Tingting. Change analysis for Antarctic and Arctic sea ice concentration and extent[J]. Remote Sensing Information, 2016, 31(2): 24−29. doi: 10.3969/j.issn.1000-3177.2016.02.005
    [6] Comiso J C. Increasing positive trend in the Antarctic sea ice extent and associated surface temperature changes[C]//AGU Fall Meeting. AGU Fall Meeting Abstracts, 2015.
    [7] 李新情, 程晓, 惠凤鸣, 等. 2014年夏季北极东北航道冰情分析[J]. 极地研究, 2016, 28(1): 87−94.

    Li Xinqing, Cheng Xiao, Hui Fengming, et al. Analysis of sea ice conditions in the Arctic northeast passage in summer 2014[J]. Chinese Journal of Polar Research, 2016, 28(1): 87−94.
    [8] 马丽娟, 陆龙骅, 卞林根. 南极海冰北界涛动指数及其与我国夏季天气气候的关系[J]. 应用气象学报, 2007, 18(4): 568−572. doi: 10.3969/j.issn.1001-7313.2007.04.019

    Ma Lijuan, Lu Longhua, Bian Lingen. Antarctic sea-ice extent oscillation index with the relationship between ASEOI and synoptic climate in summer of China[J]. Journal of Applied Meteorological Science, 2007, 18(4): 568−572. doi: 10.3969/j.issn.1001-7313.2007.04.019
    [9] Parkinson C L. Arctic Sea Ice, 1973−1976: Satellite Passive -Microwave Observations[M]. Washington, DC: Scientific and Technical Information Branch, NASA, 1987.
    [10] Witze A. Ageing satellites put crucial sea-ice climate record at risk[J]. Nature, 2017, 551(7678): 13−14. doi: 10.1038/nature.2017.22907
    [11] 国家卫星气象中心. 微波成像仪(MWRI)[EB/OL]. [2018−03−23]. http://satellite.nsmc.org.cn/PortalSite/StaticContent/DeviceIntro_FY3_MWRI.aspx

    National Satellite Meteorological Center. Microwave Radiation Imager(MWRI)[EB/OL].[2018−03−23]. http://satellite.nsmc.org.cn/PortalSite/StaticContent/DeviceIntro_FY3_MWRI.aspx
    [12] Remote Sensing Systems[EB/OL].[2018−04−10]. http://www.remss.com/measurements/brightness-temperature
    [13] Hilburn K A, Wentz F J. Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA)[J]. Journal of Applied Meteorology and Climatology, 2008, 47(3): 778−794. doi: 10.1175/2007JAMC1635.1
    [14] Cavalieri D J, Parkinson C L, Gloersen P, et al. Sea Ice Concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1[EB/OL]. [2018−01−29]. https://nsidc.org/data/NSIDC-0051/versions/1
    [15] 黄端, 邱玉宝, 石利娟, 等. 两种星载微波辐射计被动亮温数据的交叉定标[J]. 测绘科学, 2017, 42(1): 136−142.

    Huang Duan, Qiu Yubao, Shi Lijuan, et al. Cross-calibration for passive microwave measurement of MERI and AMSR-E[J]. Science of Surveying and Mapping, 2017, 42(1): 136−142.
    [16] Cavalieri D J, Crawford J P, Drinkwater M R, et al. Aircraft active and passive microwave validation of sea ice concentration from the defense meteorological satellite program special sensor microwave imager[J]. Journal of Geophysical Research: Oceans, 1991, 96(C12): 21989−22008. doi: 10.1029/91JC02335
    [17] Cavalieri D J, Parkinson C L, Digirolamo N, et al. Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 233−236. doi: 10.1109/LGRS.2011.2166754
    [18] Cavalieri D J, St. Germain K M, Swift C T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I[J]. Journal of Glaciology, 1995, 41(139): 455−464. doi: 10.1017/S0022143000034791
    [19] Cavalieri D J, Parkinson C L, Gloersen P, et al. Arctic and Antarctic sea ice concentrations from multichannel passive-microwave satellite data sets: October 1978 to September 1995 User's guide[R]. Washington D.C.: NASA Technical Memorandum, 1997.
    [20] Remote Sensing Systems[EB/OL].[2018−11−19]. http://images.remss.com/amsr/amsr2_data_daily.html#top
    [21] Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations[J]. The Cryosphere, 2015, 9(5): 1797−1817. doi: 10.5194/tc-9-1797-2015
    [22] Kern S, Rösel A, Pedersen L T, et al. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations[J]. The Cryosphere, 2016, 10(5): 2217−2239. doi: 10.5194/tc-10-2217-2016
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  31
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2019-02-21
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-01-25

目录

    /

    返回文章
    返回