留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TerraSAR-X卫星数据的内孤立波参数和海表流速信息提取的探索研究

曾智 李晓明 任永政 陈学恩

曾智,李晓明,任永政,等. 基于TerraSAR-X卫星数据的内孤立波参数和海表流速信息提取的探索研究[J]. 海洋学报,2020,42(1):90–101,doi:10.3969/j.issn.0253−4193.2020.01.010
引用本文: 曾智,李晓明,任永政,等. 基于TerraSAR-X卫星数据的内孤立波参数和海表流速信息提取的探索研究[J]. 海洋学报,2020,42(1):90–101,doi:10.3969/j.issn.0253−4193.2020.01.010
Zeng Zhi,Li Xiaoming,Ren Yongzheng, et al. Exploratory research on the retrieval of internal wave parameters and sea surface current velocity based on TerraSAR-X satellite data[J]. Haiyang Xuebao,2020, 42(1):90–101,doi:10.3969/j.issn.0253−4193.2020.01.010
Citation: Zeng Zhi,Li Xiaoming,Ren Yongzheng, et al. Exploratory research on the retrieval of internal wave parameters and sea surface current velocity based on TerraSAR-X satellite data[J]. Haiyang Xuebao,2020, 42(1):90–101,doi:10.3969/j.issn.0253−4193.2020.01.010

基于TerraSAR-X卫星数据的内孤立波参数和海表流速信息提取的探索研究

doi: 10.3969/j.issn.0253-4193.2020.01.010
基金项目: 海南省自然科学基金创新研究团队项目(2016CXTD016);国家自然科学基金(41876201,U1706218)。
详细信息
    作者简介:

    曾智(1994—),男,山东省青岛市人,博士研究生,研究方向为海洋内波。E-mail:jtmdown@foxmail.com

    通讯作者:

    陈学恩,男,教授,研究方向为海洋环流动力学。E-mail:xchen@ouc.edu.cn

  • 中图分类号: P731.21;P717

Exploratory research on the retrieval of internal wave parameters and sea surface current velocity based on TerraSAR-X satellite data

  • 摘要: 本文利用TerraSAR-X(TSX)卫星于2010年4月22日在南海东沙岛附近海域获取的数据进行海洋内孤立波动力要素和海表流速信息的提取研究。基于TSX数据的后向散射强度信息,利用经验模态分解法得到内孤立波半波宽度,再利用两层模型法和参数化法计算得到内孤立波振幅和相速度。反演结果显示,利用参数化方法得到的振幅(约21~39 m)和两层模型法得到的相速度(约1.07 m/s)与历史实测资料较为一致。进而利用TSX的顺轨干涉数据获取研究海域内的多普勒速度,再分别采用M4S模型法和直接分离法处理,进而提取海表流速。结果显示,两种方法得到的海表流速的全场平均值较为一致,均为1.10 m/s左右。M4S模型法对流速最大值的改变量较大而直接分离法对流速最小值的改变量较大。M4S模型对内孤立波波峰线区域海表流速的修正大于无内孤立波的海域。最后,基于KdV方程计算得到内孤立波引起的表面流的流速约为0.28 m/s,对反演出的海表流速贡献占比23%。
  • 图  1  TSX卫星的DRA工作模式示意图

    Fig.  1  Demonstration of DRA mode of TerraSAR-X satellite

    图  2  TSX卫星在东沙岛附近获取的快视图(2010年4月22日22:13 UTC)(a),对应该快视图的雷达后向散射强度(b),降噪处理后对应快视图的相位差(c)

    海域大小约30 km(距离向)×110 km(方位向),图a中右下部所示明亮区域为东沙岛和东沙环礁;图b中5个断面用于内波参数提取的计算;图c用于后续海表流场的反演

    Fig.  2  Quicklook of the TSX scene acquired over Dongsha Island at 22:13 UTC on April 22, 2010 (a); the corresponding radar backscatter intensity of the TSX scene (b); the derived phase difference from the ATI data of the TSX scene (c)

    Sea area size is 30 km (range direction)×110 km (azimuth direction), the bright areas are Dongsha Island and Dongsha Atoll in a; the 5 transects in b are used to extract parameters of the internal wave; c is further used to retrieve the sea surface current

    图  3  沿内孤立波传播方向的断面1平均后的后向散射强度数据(a);b−i为经验模态分解法得到的8个本征模态

    Fig.  3  Distribution of the averaged backscatter intensity of Transect 1 along the propagation direction of the internal wave (a); b−i are 8 intrinsic modes

    图  4  研究海域的水深分布(a)和断面1所在海域的浮性频率剖面(b)

    Fig.  4  Bathymetry of the research area (a) and profile of buoyancy frequency of Transect 1 (b)

    图  5  顺轨干涉SAR海表运动速度提取示意图

    Fig.  5  Diagram of derivation of sea surface velocity using ATI-SAR

    图  6  利用TSX的ATI数据得到的多普勒速度的空间分布(a)和对应的多普勒速度值统计直方图(b)

    Fig.  6  Spatial distribution of the derived Doppler velocity from the TSX ATI data (a) and statistic histogram of the corresponding Doppler velocity (b)

    图  7  M4S模型法得到的海表流速结果(雷达视向)(a),直接分离法得到的海表流速结果(雷达视向)(b),两者的差值(c)

    Fig.  7  Sea surface current speed (component in the line of sight) retrieved using the M4S model (a), sea surface current speed (component in the line of sight) derived using the separation method (b); differences between the two retrievals (c)

    表  1  TSX获取的SAR图像的基本信息

    Tab.  1  Technical specification of the TerraSAR-X ATI data

    产品级别工作模式极化方式天线接收模式空间分辨率
    单视斜距复
    影像
    条带成像HHDRA约2 m
    下载: 导出CSV

    表  2  不同模态的归一化方差

    Tab.  2  Normalized variance of the 8 intrinsic modes

    模态12345678
    归一化方差0.0580.1420.1030.2860.1610.1090.0520.089
    下载: 导出CSV

    表  3  图2b中各断面内孤立波特征半宽度

    Tab.  3  Characteristic half width of internal solitary wave in each transect in Fig.2b

    断面12345
    特征半宽度/m749.8663.3687.3713.6709.3
    下载: 导出CSV

    表  4  利用两层模型法和参数化方法提取得到的图2b中5个断面内孤立波的振幅和相速度

    Tab.  4  Amplitude and phase speed of internal solitary waves in the 5 transects marked in Fig. 2b, obtained using the two-layer-model and the parameterization method

    断面两层模型法参数化法
    振幅/m相速度/m·s–1振幅/m
    16.721.0738.69
    24.831.0621.45
    34.971.0827.33
    44.841.1029.70
    55.271.1132.25
    下载: 导出CSV

    表  5  利用M4S模型法和直接分离法得到的速度及原多普勒速度对比

    Tab.  5  Comparison of the velocities obtained by the M4S model method and direct-separation method and the Doppler velocity

    原多普勒速度M4S模型法直接分离法
    流速最大值/m·s–12.711.832.30
    相对变化比率–32.33%–15.12%
    流速最小值/m·s–10.480.430.19
    相对变化比率–11.71%–61.27%
    流速平均值/m·s–11.391.101.11
    相对变化比率–20.81%–19.96%
    下载: 导出CSV
  • [1] Zhang Z, Fringer O B, Ramp S R. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05022.
    [2] Guo C, Chen X. A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography, 2014, 121: 7−23. doi: 10.1016/j.pocean.2013.04.002
    [3] Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65−69. doi: 10.1038/nature14399
    [4] Liu A K, Chang Y S, Hsu M K, et al. Evolution of nonlinear internal waves in the East and South China Sea[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7995−8008. doi: 10.1029/97JC01918
    [5] 杨劲松, 周长宝, 黄韦艮, 等. 合成孔径雷达图像内波参数提取方法研究[J]. 遥感技术与应用, 2000, 15(1): 6−9. doi: 10.3969/j.issn.1004-0323.2000.01.002

    Yang Jinsong, Zhou Changbao, Huang Weigen, et al. Study on extracting internal wave parameter of SAR images[J]. Remote Sensing Technology and Application, 2000, 15(1): 6−9. doi: 10.3969/j.issn.1004-0323.2000.01.002
    [6] Zheng Quanan, Yuan Yeli, Klemas V, et al. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width[J]. Journal of Geophysical Research: Oceans, 2001, 106(C12): 31415−31423. doi: 10.1029/2000JC000726
    [7] 申辉. 海洋内波的遥感与数值模拟研究[D]. 北京: 中国科学院海洋研究所, 2005.

    Shen Hui. Remote sensing and numerical modeling of oceanic internal waves[D]. Beijing: Institute of Oceanology, Chinese Academy of Sciences, 2005.
    [8] 甘锡林, 黄韦艮, 杨劲松, 等. 基于希尔伯特-黄变换的合成孔径雷达内波参数提取新方法[J]. 遥感学报, 2007, 11(1): 39−47. doi: 10.11834/jrs.20070106

    Gan Xilin, Huang Weigen, Yang Jinsong, et al. A new method to extract internal wave parameters from SAR imagery with Hilbert-Huang Transform[J]. Journal of Remote Sensing, 2007, 11(1): 39−47. doi: 10.11834/jrs.20070106
    [9] Li Xiaofeng, Clemente-Colón P, Friedman K S. Estimating oceanic mixed-layer depth from internal wave evolution observed from Radarsat-1 SAR[J]. Johns Hopkins APL Technical Digest, 2000, 21(1): 130−135.
    [10] Apel J R, Gonzalez F I. Nonlinear features of internal waves off Baja California as observed from the SEASAT imaging radar[J]. Jounal of Geophysical Research: Oceans, 1983, 88(C7): 4459−4466. doi: 10.1029/JC088iC07p04459
    [11] 曾侃. 从卫星合成孔径雷达海表图像研究海洋内波的三个问题[D]. 青岛: 中国海洋大学, 2002.

    Zeng Kan. Three aspects of studying oceanic internal waves by space-borne synthetic aperture radar images[D]. Qingdao: Ocean University of China, 2002.
    [12] 甘锡林, 黄韦艮, 杨劲松, 等. 利用多源遥感卫星数据研究南海内波的时空分布特征[J]. 遥感技术与应用, 2007, 22(2): 242−245. doi: 10.3969/j.issn.1004-0323.2007.02.024

    Gan Xilin, Huang Weigen, Yang Jinsong, et al. The study of spatial and temporal distribution characteristics of internal waves in the South China Sea from multi-satellite data[J]. Remote Sensing Technology and Application, 2007, 22(2): 242−245. doi: 10.3969/j.issn.1004-0323.2007.02.024
    [13] Xue Jingshuang, Graber H C, Lund B, et al. Amplitudes estimation of large internal solitary waves in the mid-Atlantic bight using synthetic aperture radar and marine X-band radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3250−3258. doi: 10.1109/TGRS.2012.2221467
    [14] 王晶, 郭凯, 孙美玲, 等. 3层模型的内波传播方程与参数反演[J]. 遥感学报, 2015, 19(2): 188−194.

    Wang Jin, Guo Kai, Sun Meiling, et al. Nonlinear Schrödinger equation and parametric inversion of internal wave propagation using three-layer model[J]. Journal of Remote Sensing, 2015, 19(2): 188−194.
    [15] Korteweg D J, de Vries G. XLI On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. Philosophical Magazine, 1895, 39(240): 422−443.
    [16] 李立, 许金电, 靖春生, 等. 南海海面高度、动力地形和环流的周年变化—TOPEX/Poseidon卫星测高应用研究[J]. 中国科学: 地球科学, 2003, 46(2): 127−138.

    Li Li, Xu Jindian, Jing Chunsheng, et al. Annual variation of sea surface height, dynamic topography and circulation in the South China Sea: a TOPEX/Poseidon satellite altimetry study[J]. Science in China Series D: Earth Sciences, 2003, 46(2): 127−138.
    [17] Fernández-Prieto D, Sabia R. Remote Sensing Advances for Earth System Science[M]. Berlin, Heidelberg: Springer, 2013.
    [18] Madsen K S, Høyer J L, Tscherning C C. Near-coastal satellite altimetry: sea surface height variability in the North Sea--Baltic Sea area[J]. Geophysical Research Letters, 2007, 34(14): L14601. doi: 10.1029/2007GL029965
    [19] 林珲, 范开国, 申辉, 等. 星载SAR海洋内波遥感研究进展[J]. 地球物理学进展, 2010, 25(3): 1081−1091. doi: 10.3969/j.issn.1004-2903.2010.03.049

    Lin Hui, Fan Kaiguo, Shen Hui, et al. Review on remote sensing of oceanic internal wave by space-borne SAR[J]. Progress in Geophysics, 2010, 25(3): 1081−1091. doi: 10.3969/j.issn.1004-2903.2010.03.049
    [20] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surface currents[J]. Nature, 1987, 328(6132): 707−709. doi: 10.1038/328707a0
    [21] Goldstein R M, Zebker H A, Barnett T P. Remote sensing of ocean currents[J]. Science, 1989, 246(4935): 1282−1285. doi: 10.1126/science.246.4935.1282
    [22] Romeiser R, Thompson D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446−458. doi: 10.1109/36.823940
    [23] 甘锡林, 黄韦艮, 杨劲松, 等. 基于M4S模型的合成孔径雷达海洋内波参数反演新方法[C]//中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编. 青岛: 中国海洋湖沼学会, 2007.

    Gan Xilin, Huang Weigen, Yang Jinsong, et al. A new method for retrieving internal wave parameters from synthetic aperture radar based on M4S model[C]//Compilation of Abstracts of Ninth National Congress and Academic Seminar. Qingdao: Chinese Society for Oceanology and Limnology, 2007.
    [24] 任永政. 从卫星TerraSAR-X图像反演海面风场和海表流场方法研究[D]. 青岛: 中国海洋大学, 2009.

    Ren Yongzheng. Study on retrieval algorithms of sea surface wind fields and sea surface current fields from TerraSAR-X images[D]. Qingdao: Ocean University of China, 2009.
    [25] 范开国, 黄韦艮, 甘锡林, 等. SAR海洋内波表层流反演方法探讨[J]. 遥感学报, 2010, 14(1): 122−130.

    Fan Kaiguo, Huang Weigen, Gan Xilin, et al. Retrieving internal wave surface currents from SAR image[J]. Journal of Remote Sensing, 2010, 14(1): 122−130.
    [26] Romeiser R, Suchandt S, Runge H, et al. First analysis of TerraSAR-X along-track inSAR-derived current fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 820−829. doi: 10.1109/TGRS.2009.2030885
    [27] Romeiser R, Runge H, Suchandt S, et al. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2759−2772. doi: 10.1109/TGRS.2013.2265659
    [28] Romeiser R, Graber H C. Advanced remote sensing of internal waves by spaceborne along-track inSAR-a demonstration with TerraSAR-X[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(12): 6735−6751.
    [29] Alpers W, Hennings I. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1984, 89(C6): 10529−10546. doi: 10.1029/JC089iC06p10529
    [30] Mittermayer J, Alberga V, Buckreuss S, et al. TerraSAR-X: predicted performance[C]//Sensors, Systems, and Next-Generation Satellites VI. International Society for Optics and Photonics. Crete, Greece: SPIE, 2003, 4881: 244-256.
    [31] Moller D, Frasier S J, Porter D L, et al. Radar-derived interferometric surface currents and their relationship to subsurface current structure[J]. Journal of Geophysical Research: Oceans, 1998, 103(C6): 12839−12852. doi: 10.1029/98JC00781
    [32] Shemer L, Marom M, Markman D. Estimates of currents in the nearshore ocean region using interferometric synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1993, 98(C4): 7001−7010. doi: 10.1029/92JC02962
    [33] Graber H C, Thompson D R, Carande R E. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar[J]. Journal of Geophysical Research: Oceans, 1996, 101(C11): 25813−25832. doi: 10.1029/96JC02241
    [34] Kim D J, Moon W M, Moller D, et al. Measurements of ocean surface waves and currents using L-and C-band along-track interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2821−2832. doi: 10.1109/TGRS.2003.817210
    [35] Breit H, Fritz T, Balss U, et al. TerraSAR-X SAR processing and products[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(2): 727−740.
    [36] Gabele M, Brautigam B, Schulze D, et al. Fore and aft channel reconstruction in the TerraSAR-X dual receive antenna mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 795−806. doi: 10.1109/TGRS.2009.2032920
    [37] Alpers W. Theory of radar imaging of internal waves[J]. Nature, 1985, 314(6008): 245−247. doi: 10.1038/314245a0
    [38] Jia T, Liang J J, Li X M, et al. SAR Observation and numerical simulation of internal solitary wave refraction and reconnection behind the Dongsha Atoll[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 74−89. doi: 10.1002/2017JC013389
    [39] Orr M H, Mignerey P C. Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves[J]. Journal of Geophysical Research, 2003, 108(C3): 3064. doi: 10.1029/2001JC001163
    [40] Zeng Kan, He Mingxia. A simple boundary process technique for empirical mode decomposition[C]//International Geoscience and Remote Sensing Symposium. Anchorage, AK, USA: IEEE, 2004, 6: 4258-4261.
    [41] 杨劲松, 黄韦艮, 周成虎, 等. 利用SAR图像计算内波深度和振幅的可行性研究[J]. 国土资源遥感, 2003, 15(1): 29−32, 42. doi: 10.3969/j.issn.1001-070X.2003.01.009

    Yang Jinsong, Huang Weigen, Zhou Chenghu, et al. The feasibility of applying SAR imagery to the estimation of wave depth and amplitude[J]. Remote Sensing for Land and Resources, 2003, 15(1): 29−32, 42. doi: 10.3969/j.issn.1001-070X.2003.01.009
    [42] Holloway P E, Pelinovsky E, Talipova T. A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone[J]. Journal of Geophysical Research: Oceans, 1999, 104(C8): 18333−18350. doi: 10.1029/1999JC900144
    [43] Ramp S R, Tang T Y, Duda T F, et al. Internal solitons in the northeastern South China Sea. Part I: sources and deep water propagation[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1157−1181. doi: 10.1109/JOE.2004.840839
    [44] 李海艳. 利用合成孔径雷达研究海洋内波[D]. 青岛: 中国海洋大学, 2004.

    Li Haiyan. Studying ocean internal waves with SAR[D]. Qingdao: Ocean University of China, 2004.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  125
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2019-02-26
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-01-25

目录

    /

    返回文章
    返回