留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大连温带海域潮间带底栖海藻固碳和储碳潜力模拟研究

邵魁双 巩宁 王立军 曲翊 杜念东

邵魁双,巩宁,王立军,等. 大连温带海域潮间带底栖海藻固碳和储碳潜力模拟研究[J]. 海洋学报,2019,41(12):113–120,doi:10.3969/j.issn.0253−4193.2019.12.011
引用本文: 邵魁双,巩宁,王立军,等. 大连温带海域潮间带底栖海藻固碳和储碳潜力模拟研究[J]. 海洋学报,2019,41(12):113–120,doi:10.3969/j.issn. 0253−4193.2019.12.011
Shao Kuishuang,Gong Ning,Wang Lijun, et al. Simulation study on the carbon fixed and stored by intertidal seaweeds in temperate waters in Dalian[J]. Haiyang Xuebao,2019, 41(12):113–120,doi:10.3969/j.issn.0253−4193.2019.12.011
Citation: Shao Kuishuang,Gong Ning,Wang Lijun, et al. Simulation study on the carbon fixed and stored by intertidal seaweeds in temperate waters in Dalian[J]. Haiyang Xuebao,2019, 41(12):113–120,doi:10.3969/j.issn.0253−4193.2019.12.011

大连温带海域潮间带底栖海藻固碳和储碳潜力模拟研究

doi: 10.3969/j.issn.0253-4193.2019.12.011
基金项目: 国家重点研发计划项目(2016YFC1402104);中国科学院战略性先导科技专项 (A类 )(XDA13020401);海洋公益性专项(201105021)。
详细信息
    作者简介:

    邵魁双(1973—),男,辽宁省凤城市人,副研究员,博士,主要从事海藻生物学研究。E-mail: ksshao@nmemc.org.cn

  • 中图分类号: X55

Simulation study on the carbon fixed and stored by intertidal seaweeds in temperate waters in Dalian

  • 摘要: 底栖海藻是海洋生态系统中重要的初级生产力,开展其固碳和储碳机制研究,有利于提高对我国海域海洋固碳和储碳潜力的认识。本文基于海区条件的模拟,开展了大连海域潮间带优势海藻的日固碳量、日呼吸量和日有机碳释放量的测定,结合海区生物量的调查,阐述了3个海藻床潮间带海藻固碳和储碳的季节变化规律。结果显示:在海藻固碳能力方面,绿藻类的固碳能力最强,褐藻类次之,红藻类最低。大连海域潮间带海藻的固碳量、储碳量和有机碳释放量在12月至5月处于较高水平,6月至11月较低,平均每个海藻床潮间带区域年固碳量和年有机碳释放量分别为1.72×105 g/a和2.1×104 g/a。潮间带海藻月固碳量是储碳量的1.7倍。
  • 图  1  调查海域和采样点

    Fig.  1  The study area and location of sampling

    图  2  调查海域潮间带底栖海藻固碳量的月际变化

    Fig.  2  Monthly variation of the amount of the carbon fixed by intertidal seaweeds

    图  3  调查海域潮间带海藻体内储碳量的月际变化

    Fig.  3  Monthly variation of the amount of the carbon stored in intertidal seaweeds

    图  4  调查海域潮间带底栖海藻有机碳释放的月际变化

    Fig.  4  Monthly variation of the amount of released organic carbon by intertidal seaweeds

    表  1  各供试海藻的反应条件

    Tab.  1  Reaction conditions of the tested seaweeds

    试验种类光照梯度/µmol·m−2·s−1温度/℃反应时间/h
    绿藻孔石莼18.4、92、184、276、3688±0.5,15±0.5,19±0.51.2
    缘管浒苔18.4、92、184、276、3686±0.5,8±0.51.2
    袋礁膜18.4、92、184、2763±0.5,8±0.51.5
    盘苔18.4、92、184、276、368、4603±0.5,8±0.51.0
    褐藻萱藻18.4、92、1843±0.5,8±0.52.0
    鼠尾藻18.4、92、1848±0.5,15±0.52.0
    红藻马泽藻18.4、92、1843±0.5,9±0.5,15±0.52.0
    松节藻18.4、92、1848±0.5,15±0.5,22±0.52.0
    楔基角叉菜18.4、92、1843±0.5,8±0.52.0
    单条胶粘藻18.4、92、1843±0.5,6±0.52.0
    鸭毛藻18.4、92、18415±0.5,22±0.52.0
    下载: 导出CSV

    表  2  各供试海藻日固碳量、有机碳日释放量和含碳率

    Tab.  2  Daily carbon fixation, release of organic carbon and carbon content rate of tested seaweeds

    供试海藻日净固碳量/mg·d−1·g−1DOC日释放量/mg·d−1·g−1POC日释放量/mg·d−1·g−1含碳率/%
    绿藻孔石莼3.41±0.290.689±0.0430.144±0.11830.68±0.42
    缘管浒苔7.07±1.710.670±0.0480.226±0.06727.31±0.41
    袋礁膜6.36±1.381.502±0.0740.302±0.15129.33±0.45
    盘苔2.52±0.530.372±0.0220.098±0.01222.75±0.37
    褐藻鼠尾藻2.51±0.460.238±0.0460.134±0.02933.49±1.09
    萱藻1.68±0.280.110±0.0100.077±0.00737.06±0.75
    红藻马泽藻1.08±0.110.103±0.0170.014±0.00725.77±0.3
    楔基角叉菜 0.48±0.03 0.067±0.014 0.034±0.002 28.65±0.41
    松节藻0.72±0.100.060±0.0020.046±0.00425.46±0.49
    单条胶粘藻0.72±0.120.060±0.0100.014±0.00532.06±0.26
    鸭毛藻0.24±0.060.029±0.0050.019±0.00222.39±0.56
    下载: 导出CSV
  • [1] Zeebe R E, Gladrow W D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes: Equilibrium, Kinetics, Isotopes[M]. Elsevier, 2001.
    [2] Caldeira K, Wickett M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
    [3] Brierley A S, Kingsford M J. Impacts of climate change on marine organisms and ecosystems[J]. Current Biology, 2009, 19(14): 602−614. doi: 10.1016/j.cub.2009.05.046
    [4] 王阳. 低碳经济发展的国际经验与中国的发展策略研究[J]. 南京财经大学学报, 2010(2): 11−14.

    WangYang. Low-carbon economy development in China[J]. Journal of Nanjing University of Finance and Economicsa, 2010(2): 11−14.
    [5] Nellemann C, Corcoran E, Duarte C M, et al. Blue carbon. A rapid response assessment[R]. United Nations Environment Programme, GRID-Arendal, 2009.
    [6] Sabine C L, Feely R A, Gruber N, et al. The Oceanic Sink for Anthropogenic CO2[J]. Science, 2004, 305: 367−371. doi: 10.1126/science.1097403
    [7] Balino B M, Fasham M J R, Bowles M C. Ocean biogeochemistry and global change: JGOFS research highlights 1988-2000[J]. IGBP Science, 2001, 2: 1−32.
    [8] Battle, M, Bender M L, Tans P P, et al. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C[J]. Science, 2000, 287: 2467−2470. doi: 10.1126/science.287.5462.2467
    [9] 赵玉灵. 近30年来我国海岸线遥感调查与演变分析[J]. 国土资源遥感, 2010( S86): 174−177. doi: 10.6046/gtzyyg.2010.s1.36

    Zhao Yuling. The remote sensing dynamic monitoring of China’s shoreline evolution in the past 30 years[J]. Remote Sensing for Land and Resources, 2010( S86): 174−177. doi: 10.6046/gtzyyg.2010.s1.36
    [10] Smith J V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838−840. doi: 10.1126/science.211.4484.838
    [11] 纪建悦, 王萍萍. 我国海水养殖业碳汇能力测度及其影响因素分解研究[J]. 海洋环境科学, 2015, 34(6): 871−878.

    Ji Jianyue, Wang Pingping. Research on China’s mariculture carbon sink capacity and influencing factors[J]. Marine Environmental Science, 2015, 34(6): 871−878.
    [12] 周伟男. 硇洲岛岩礁带底栖生物的群落结构及大型海藻的碳汇作用[D]. 广东: 湛江海洋大学, 2013: 10-52.

    Zhou Weinan. The macrobenthos community structure and effects on the carbon sink of macroalgae in the intertidal rocky zone in Naozhou Island[D]. Guangdong: Guangdong Ocean University, 2013: 10−52.
    [13] 严立文, 黄海军, 陈纪涛, 等. 我国近海藻类养殖的碳汇强度估算[J]. 海洋科学进展, 2011, 29(4): 537−545. doi: 10.3969/j.issn.1671-6647.2011.04.014

    Yan Liwen, Huang Haijun, Chen Jitao, et al. Estimation of carbon sink capacity of algal mariculture in the coastal areas of China[J]. Advancs in Marine Science, 2011, 29(4): 537−545. doi: 10.3969/j.issn.1671-6647.2011.04.014
    [14] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359−36. doi: 10.3321/j.issn:1001-8166.2005.03.014

    Zhang Jihong, Fang Jianguang, Tang Qisheng. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advances in Earth Science, 2005, 20(3): 359−36. doi: 10.3321/j.issn:1001-8166.2005.03.014
    [15] 岳冬冬. 海带养殖结构变动与海藻养殖碳汇量核算的情景分析[J]. 福建农业学报, 2012, 27(4): 432−436. doi: 10.3969/j.issn.1008-0384.2012.04.022

    Yue Dongdong. Correlation between kelp aquaculture and carbon sinks[J]. Fujian Journal of Agricultural Sciences, 2012, 27(4): 432−436. doi: 10.3969/j.issn.1008-0384.2012.04.022
    [16] 权伟, 应苗苗, 康华靖, 等. 基于时间序列模型的洞头大型藻类碳汇强度预测分析[J]. 中国农学通报, 2014, 30(8): 63−67. doi: 10.11924/j.issn.1000-6850.2013-1550

    Quan Wei, Ying Miaomiao, Kang Huajing, et al. Carbon sink capacity forecast of macroscopic algae in the coastal areas of Dongtou county based on time series model[J]. Chinese Agricultural Science Bulletin, 2014, 30(8): 63−67. doi: 10.11924/j.issn.1000-6850.2013-1550
    [17] 宋金明, 李学刚, 袁华茂, 等. 中国近海生物固碳强度与潜力[J]. 生态学报, 2008, 28(2): 551−558. doi: 10.3321/j.issn:1000-0933.2008.02.013

    Song Jinming, Li Xuegang, Yuan Huamao, et al. Carbon fixed by phytoplankton and cultured algae in China coastal seas[J]. Acta Ecological Sinica, 2008, 28(2): 551−558. doi: 10.3321/j.issn:1000-0933.2008.02.013
    [18] 焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用[J]. 中国科学: 地球科学, 2012, 42(10): 1473−1486.

    Jiao Nianzhi. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump[J]. Science China Earth Sciences, 2012, 42(10): 1473−1486.
    [19] Ogawa H, Tanoue E. Dissolved organic matter in oceanic waters[J]. Journal of Oceanography, 2003, 59: 129−147. doi: 10.1023/A:1025528919771
    [20] Fogg G E, Boalch G T. Extracellular products in pure cultures of a brown Alga[J]. Nature, 1958, 181: 789−790. doi: 10.1038/181789a0
    [21] Fogg G E. Release of glycollate from tropical marine plants[J]. Australian Journal of Plant Physiology, 1976, 3(1): 57−61.
    [22] Fogg G E. Extracellular products of algae[J]. Oceanography and Marine Biology: an Annual Review, 1966, 4: 195−212.
    [23] Lefèvre M. Extracellular products of algae[M]. Algae and Man: Springer, 1964: 337-367.
    [24] 岳国峰, 王金霞, 朱明远, 等. 藻类无机碳营养的研究进展(Ⅰ)——研究起源及研究方法[J]. 海洋科学, 2003, 27(5): 15−17. doi: 10.3969/j.issn.1000-3096.2003.05.005

    Yue Guofeng, Wang Jinxia, Zhu Mingyuan, et al. Progress of inorganic carbon acquisition by algae (Ⅰ): origin and methods of the studies[J]. Marine Science, 2003, 27(5): 15−17. doi: 10.3969/j.issn.1000-3096.2003.05.005
    [25] 邵魁双, 李煕宜. 大连海区潮间带底栖海藻群落的季节变化[J]. 大连水产学院学报, 2000, 15(1): 29−34.

    Shao Kuishuang, Li Xiyi. Seasonal variation of intertidal benthic seaweed in Dalian[J]. Journal of Dalian Fisheries University, 2000, 15(1): 29−34.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  17
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-16
  • 修回日期:  2019-10-28
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回