留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

病毒感染海洋球石藻Emiliania huxleyi的转录组分析

田雪 蔡伟聪 苏金净 吴书燕 刘静雯

田雪,蔡伟聪,苏金净,等. 病毒感染海洋球石藻 Emiliania huxleyi的转录组分析[J]. 海洋学报,2019,41(12):103–112,doi:10.3969/j.issn.0253−4193.2019.12.010
引用本文: 田雪,蔡伟聪,苏金净,等. 病毒感染海洋球石藻 Emiliania huxleyi 的转录组分析[J]. 海洋学报,2019,41(12):103–112,doi:10.3969/j.issn. 0253−4193.2019.12.010
Tian Xue,Cai Weicong,Su Jinjing, et al. Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection[J]. Haiyang Xuebao,2019, 41(12):103–112,doi:10.3969/j.issn.0253−4193.2019.12.010
Citation: Tian Xue,Cai Weicong,Su Jinjing, et al. Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection[J]. Haiyang Xuebao,2019, 41(12):103–112,doi:10.3969/j.issn.0253−4193.2019.12.010

病毒感染海洋球石藻Emiliania huxleyi的转录组分析

doi: 10.3969/j.issn.0253-4193.2019.12.010
基金项目: 国家自然科学基金项目(41576166);福建省自然科学基金项目(2019J01696)。
详细信息
    作者简介:

    田雪(1992—),女,河南省南阳市人,主要从事海洋微生物生化与分子生物学研究。E-mail: yytx1216@126.com

    通讯作者:

    刘静雯,教授,主要从事海洋微型生物分子生物学研究。E-mail: ljwsbch@163.com;jwliu@jmu.edu.cn

  • 中图分类号: Q78

Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection

  • 摘要: 海洋球石藻Emiliania huxleyi及其特异性裂解病毒E. huxleyi virus (EhVs)在调节海洋碳、硫循环及全球气候变化中起着重要作用,也是开展真核生物病毒–宿主相互作用研究的良好模型系统之一。为了探究病毒感染条件下E. huxleyi基因表达水平的变化,以海洋球石藻E. huxley–BOF 92及其专一性裂解病毒EhV-99B1为研究对象,利用Illumina HiSeq 2000高通量测序技术,分别对E. huxleyi病毒感染组(Exp)和非感染对照组(Con)6 h和45 h的藻细胞样品进行转录组测序分析。共得到32 909条平均长度为1 153 bp的基因。病毒感染6 h和45 h分别得到2 617和5 229个差异表达基因,其中共差异表达基因465个。随机选取10条差异表达基因,采用qRT-PCR进行实验验证,结果证实转录组分析可靠。GO功能注释和KEGG通路富集,发现大量基因与氧化应激反应、脂类代谢、碳水化合物代谢及信号转导等代谢过程相关,其中变化最显著的是谷胱甘肽代谢途径。从病毒感染球石藻转录组中筛选出部分与氧化应激反应相关的基因,其中9个基因显著上调,11个基因显著下调,表明宿主能够通过体内的氧化应激反应响应病毒胁迫。
  • 图  1  转录本的长度分布

    Fig.  1  Length distribution of the transcripts

    图  2  病毒感染不同时间点差异表达基因的韦恩图

    a. 上调差异基因韦恩图;b 下调差异基因韦恩图

    Fig.  2  The Venn diagram of differentially expressed genes in 6 h and 45 h post infection

    a. The number of up-regulation differentially expressed genes; b. the number of down-regulation differentially expressed genes

    图  3  10个差异表达基因的qRT-PCR验证

    Fig.  3  Verification of ten differentially expressed genes by qRT-PCR

    图  4  差异表达基因GO富集结果

    病毒感染6 h(a)和45 h(b)

    Fig.  4  The most enriched GO terms and corresponding differentially expressed gene numbers of each term

    Cells infected by the virus at 6 h (a) and 45 h (b)

    图  5  EhV感染重塑宿主谷胱甘肽代谢通路图

    OPase:羟脯氨酸酶;MAP:膜氨肽酶I;GSH:γ-谷氨酰半胱氨酸合成酶;GGT:γ-谷氨酰转移酶;GSHS:谷胱甘肽合成酶;GR:胱甘肽还原酶;G6PDH:葡萄糖-6-磷酸脱氢酶;GPx:谷胱甘肽过氧化物酶;GDA:谷胱甘肽脱氢酶;SSase:亚精胺合成酶;ODase:鸟氨酸脱羧酶。基因名称框的颜色表示基因表达水平的倍数变化,log2 FC > 0表示上调,log2 FC < 0表示上调

    Fig.  5  Glutathione metabolic pathways responding to virus infection

    OPase: oxoprolinase; MAP: membrane aminopeptidase I; GSH: γ-glutamylcysteine synthetase; GGT: γ-glutamyl transferase; GSHS: glutathione synthetase; GR: glutathione reductase; G6PDH: glucose-6-phosphate dehydrogenase; GPx: glutathione peroxidase; GDA: glutathione dehydrogenase; SSase: spermidine synthase; ODase: ornithine decarboxylase. Color filling of gene name box depicts the fold change of expression levels of the gene based on RNA-seq data, log2 FC > 0 indicating up- regulation, log2 FC < 0 indicating down- regulation.

    表  1  实验所用的引物

    Tab.  1  Primers used in the experiments

    基因正向引物序列 (5′-3′)反向引物序列 (5′–3′)
    β-Tublin (17257729)TCATGTGCTCCTACTCGGTCTTCTTCAGCGTGCGGAAACAGA
    ATG13 (17261891)GCGAAACTGCGTCCAGAAGACGCTCGAGAAGCACGAGATG
    MC1 (17277722)TTATCAGCGACGAGGACAGTTCGCTCAACATGCCCTCCCTAG
    MC2 (17251088)TGGGGCTTTTCAGAGGAAGATCCGTCGCCTGAGTAAAAGATAA
    MC3 (17269785)CGACTGGCTGAATGAGGAGAAACCTTGTGGCTCTTGAGCATG
    MC4 (17283241)TCGCTGATGGTCTTTATGGATCCCTCGGAGGTCTCGTA
    hSPT (17255778)TCTCGGACACGCTCAACCACCCTCGACGATGATGATGATC
    ATG3 (17287351)TCAAGACAGTCACCCTCGAGTCGGATGACGGAGGAGATGAACT
    FADS (17253431)CTTCTCCGAGATGCCCTTCTACAGTAGCCGAGAAACTCGGA
    AMO (17252058)GCTTGTGGTAACCTTCGTCCGTGACCGCGTGAAACCAGT
    DLD2 (19046437)AATCATCGGGTCGGGGTACCATGGGGCTGGGCTACTAA
    下载: 导出CSV

    表  2  测序数据量统计结果

    Tab.  2  Statistics results of the sequencing data

    样品原始数据大小/bp原始读段量有效数据大小/bp有效读段量有效数据比率/%
    Con_45_11 206 811 65024 136 2331 197 441 65023 948 83399.22
    Con_45_21 206 812 550241 362 511 197 176 20023 943 52499.20
    Con_6_11 200 867 45024 017 3491 194 086 55023 881 73199.43
    Con_6_21 206 840 25024 136 8051 200 300 35024 006 00799.45
    Exp_45_11 206 808 35024 136 1671 200 167 60024 003 35299.44
    Exp_45_21 206 837 05024 136 7411 200 482 55024 009 65199.47
    Exp_6_11 206 850 00024 137 0001 200 301 15024 006 02399.45
    Exp_6_21 018 654 15020 373 0831 013 573 60020 271 47299.50
    下载: 导出CSV

    表  3  有效读段与参考基因组比对结果

    Tab.  3  Clean reads mapped to reference genome

    样品总读段量总映射读段占比/%单一位点映射占比/%多位点映射占比/%未映射读段占比/%
    Con_45_123 948 83378.5230.7147.8121.48
    Con_45_223 943 52480.5930.6749.9219.42
    Con_6_123 881 73162.2424.6037.6437.77
    Con_6_224 006 00776.0231.1844.8423.99
    Exp_45_124 003 35242.8416.6926.1557.16
    Exp_45_224 009 65153.7420.9432.8046.26
    Exp_6_124 006 02375.6930.3645.3324.31
    Exp_6_220 271 47275.1930.5444.6524.81
    下载: 导出CSV

    表  4  病毒感染6 h显著差异表达的氧化应激反应酶

    Tab.  4  Oxidative stress enzymes that are significantly differentially expressed in 6 hpi

    基因IDlog2 (倍数)P描述
    jgi|Emihu1|434150−1.652.79×10−13L-ascorbate peroxidase L-抗坏血酸过氧化物酶
    jgi|Emihu1|444342−2.363.57×10−19L-ascorbate peroxidase L-抗坏血酸过氧化物酶
    jgi|Emihu1|634499.581.24×10−20thioredoxin reductase 硫氧还蛋白还原酶
    jgi|Emihu1|74843−11.381.39×10−15Thioredoxin 硫氧还蛋白
    jgi|Emihu1|109275−6.711.30×10−3glutathione S-transferase 谷胱甘肽 S-转移酶
    jgi|Emihu1|447453−1.595.98×10−6glutathione-S-transferase 谷胱甘肽 S-转移酶
    jgi|Emihu1|4396077.162.10×10−5glutathione dehydrogenase 谷胱甘肽脱氢酶
    jgi|Emihu1|115948−1.501.65×10−5glutathionedehydrogenase 谷胱甘肽脱氢酶
      注:hpi为感染后小时数。
    下载: 导出CSV

    表  5  病毒感染45 h显著差异表达的氧化应激反应酶

    Tab.  5  Oxidative stress enzymes that are significantly differentially expressed in 45 hpi

    基因IDlog2 (倍数)P描述
    jgi|Emihu1|1039278.216.41×10−4glutathione peroxidase 谷胱甘肽过氧化物酶
    jgi|Emihu1|4335346.031.87×10−16glutathione peroxidase 谷胱甘肽过氧化物酶
    jgi|Emihu1|4641981.244.00×10−3peroxidase/catalase 过氧化物酶/过氧化氢酶
    jgi|Emihu1|241133−8.611.89×10−5cytochrome c peroxidase 细胞色素c过氧化物酶
    jgi|Emihu1|7484311.084.51×10−12thioredoxin 硫氧还蛋白
    jgi|Emihu1|5942410.067.34×10−6thioredoxin 硫氧还蛋白
    jgi|Emihu1|198128−1.255.00×10−4thioredoxin 硫氧还蛋白
    jgi|Emihu1|669621.496.48×10−5glutathione S-transferase 谷胱甘肽 S-转移酶
    jgi|Emihu1|4460891.312.33×10−7glutathione S-transferase 谷胱甘肽 S-转移酶
    jgi|Emihu1|109275−8.321.89×10−5glutathione S-transferase 谷胱甘肽 S-转移酶
    jgi|Emihu1|63987−1.221.18×10−9glutathione reductase 谷胱甘肽还原酶
    jgi|Emihu1|63016−1.037.00×10−3glutathione reductase 谷胱甘肽还原酶
      注:hpi为感染后小时数。
    下载: 导出CSV
  • [1] Pagarete A, Corguillé G L, Tiwari B, et al. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms[J]. FEMS Microbiology Ecology, 2011, 78(3): 555−564. doi: 10.1111/j.1574-6941.2011.01191.x
    [2] Feldmesser E, Rosenwasser S, Vardi A, et al. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi[J]. BMC Genomics, 2014, 15(1): 1−16. doi: 10.1186/1471-2164-15-1
    [3] Sheyn U, Rosenwasser S, Lehahn Y, et al. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export[J]. ISME Journal, 2018, 8(3): 704−713.
    [4] Jakob I, Weggenmann F, Posten C. Cultivation of Emiliania huxleyi for coccolith production[J]. Algal Research, 2018, 31: 47−59. doi: 10.1016/j.algal.2018.01.013
    [5] Tsuji Y, Yamazaki M, Suzuki I, et al. Quantitative analysis of carbon flow into photosynthetic products functioning as carbon storage in the marine Coccolithophore, Emiliania huxleyi[J]. Marine Biotechnology, 2015, 17(4): 428−440. doi: 10.1007/s10126-015-9632-1
    [6] Schatz D, Shemi A, Rosenwasser S, et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms[J]. New Phytologist, 2015, 204(4): 854−863.
    [7] Brussaard C P. Viral control of phytoplankton populations-a review1[J]. Journal of Eukaryotic Microbiology, 2004, 51(2): 125−138. doi: 10.1111/j.1550-7408.2004.tb00537.x
    [8] Martínez J M, Schroeder D C, Wilson W H. Dynamics and genotypic composition of Emiliania huxleyi and their co-occurring viruses during a coccolithophore bloom in the North Sea[J]. FEMS Microbiology Ecology, 2012, 81(2): 315−323. doi: 10.1111/j.1574-6941.2012.01349.x
    [9] Schroeder D C, Oke J, Malin G, et al. Coccolithovirus (phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi[J]. Archives of Virology, 2002, 147(9): 1685−1698. doi: 10.1007/s00705-002-0841-3
    [10] Wilson W H, Schroeder D C, Allen M J, et al. Complete genome sequence and lytic phase transcription profile of a coccolithovirus[J]. Science, 2005, 309(5737): 1090−1092. doi: 10.1126/science.1113109
    [11] Malitsky S, Ziv C, Rosenwasser S, et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol[J]. New Phytologist, 2016, 210(1): 88−96. doi: 10.1111/nph.13852
    [12] Ruiz E, Oosterhof M, Sandaa R, et al. Emerging interaction patterns in the Emiliania huxleyi-EhV system[J]. Viruses, 2017, 9(3): 61−75. doi: 10.3390/v9030061
    [13] Rosenwasser S, Ziv C, Van Creveld S G, et al. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean[J]. Trends in Microbiology, 2016, 24(10): 821−832. doi: 10.1016/j.tim.2016.06.006
    [14] Kegel J U, Blaxter M, Allen M J, et al. Transcriptional host-virus interaction of Emiliania huxleyi (haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays[J]. European Journal of Phycology, 2010, 45(1): 1−12. doi: 10.1080/09670260903349900
    [15] Kimmance S A, Allen M J, Pagarete A, et al. Reduction in photosystem Ⅱ efficiency during a virus-controlled Emiliania huxleyi bloom[J]. Marine Ecology Progress Series, 2014, 495: 65−76. doi: 10.3354/meps10527
    [16] Rosenwasser S, Mausz M A, Schatz D, et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean[J]. Plant Cell, 2014, 26(6): 2689−2707. doi: 10.1105/tpc.114.125641
    [17] Pagarete A, Allen M J, Wilson W H, et al. Host–virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest[J]. Environ Microbiol, 2009, 11(11): 2840−2848. doi: 10.1111/j.1462-2920.2009.02006.x
    [18] Ziv C, Malitsky S, Othman A, et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga [Microbiology][J]. Proceeding of the National Academy of Sciences, 2016, 113(13): E1907. doi: 10.1073/pnas.1523168113
    [19] Rose S L, Fulton J M, Brown C M, et al. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions[J]. Environmental Microbiology, 2014, 16(4): 1150−1166. doi: 10.1111/1462-2920.12357
    [20] Sheyn U, Rosenwasser S, Ben-Dor S, et al. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean[J]. The ISME Journal, 2016, 10(7): 1742−1754. doi: 10.1038/ismej.2015.228
    [21] Vardi A, Haramaty L, Van Mooy B A S, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population[J]. Proceedings of the National Academy of Sciences, 2012, 109(47): 19327−19332. doi: 10.1073/pnas.1208895109
    [22] Bidle K D. Programmed cell death in unicellular phytoplankton[J]. Current Biology, 2016, 26(13): R594−R607. doi: 10.1016/j.cub.2016.05.056
    [23] Bidle K D. The molecular ecophysiology of programmed cell death in marine phytoplankton[J]. Annual Review of Marine Science, 2015, 7(7): 341.
    [24] Liu J W, Cai W C, Fang X, et al. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi[J]. Archives of Microbiology, 2018, 200(3): 413−422. doi: 10.1007/s00203-017-1460-4
    [25] Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology, 2009, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25
    [26] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [27] Demey C N, Li B. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323−323. doi: 10.1186/1471-2105-12-323
    [28] 张丽丽, 张富春. 短期盐胁迫下盐穗木的转录组分析[J]. 植物研究, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011

    Zhang Lili, Zhang Fuchun. Transcriptomic analysis of the Halostachys caspica in response to short-term salt stress[J]. Plant Research, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011
    [29] Bochenek M, Etherington G J, Koprivova A, et al. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi[J]. New Phytologist, 2013, 199(3): 650−662. doi: 10.1111/nph.12303
    [30] Read B A, Kegel J, Klute M J, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution[J]. Nature, 2013, 499(7457): 209−213. doi: 10.1038/nature12221
    [31] Von Dassow P, John U, Ogata H, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton[J]. ISME Journal, 2015, 9(6): 1365−1377. doi: 10.1038/ismej.2014.221
    [32] Dassow P V, Ogata H, Probert I, et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell[J]. Genome Biology, 2009, 10(10): R114. doi: 10.1186/gb-2009-10-10-r114
    [33] Fulton J M, Fredricks H F, Bidle K D, et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi[J]. Environmental Microbiology, 2014, 16(4): 1137−1149. doi: 10.1111/1462-2920.12358
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  39
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-19
  • 修回日期:  2019-05-30
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回