留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征

张霄宇 黄牧 石学法 黄大松

张霄宇,黄牧,石学法,等. 中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征[J]. 海洋学报,2019,41(12):51–61,doi:10.3969/j.issn.0253−4193.2019.12.005
引用本文: 张霄宇,黄牧,石学法,等. 中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征[J]. 海洋学报,2019,41(12):51–61,doi:10.3969/j.issn.0253−4193.2019.12.005
Zhang Xiaoyu,Huang Mu,Shi Xuefa, et al. The geochemical characteristics of rare earth elements rich deep sea deposit of Core GC11 in central Indian Ocean Basin[J]. Haiyang Xuebao,2019, 41(12):51–61,doi:10.3969/j.issn.0253−4193.2019.12.005
Citation: Zhang Xiaoyu,Huang Mu,Shi Xuefa, et al. The geochemical characteristics of rare earth elements rich deep sea deposit of Core GC11 in central Indian Ocean Basin[J]. Haiyang Xuebao,2019, 41(12):51–61,doi:10.3969/j.issn.0253−4193.2019.12.005

中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征

doi: 10.3969/j.issn.0253-4193.2019.12.005
基金项目: 国家重点研发计划(2017YFC602305);国家自然科学基金面上项目(41773005);中国大洋矿产资源研究开发协会“十三五”课题(DY135-R2-1-01)。
详细信息
    作者简介:

    张霄宇(1972—),女,浙江省平湖市人,主要从事海洋资源与环境研究。E-mail:zhang_xiaoyu@zju.edu.cn

  • 中图分类号: P724;P736.4+1

The geochemical characteristics of rare earth elements rich deep sea deposit of Core GC11 in central Indian Ocean Basin

  • 摘要: 对中印度洋洋盆的沉积GC11岩心开展了主量元素、微量元素和稀土元素分析研究,根据主微量元素相关性特征、稀土元素富集程度以及澳大利亚后太古代平均页岩归一化模式特征,初步探讨了GC11岩心的沉积地球化学特征,以及影响稀土元素富集的可能因素。研究表明,GC11岩心稀土元素总量在400.64×10−6~742.74×10−6,平均值为658.41×10−6,略低于邻近海域的GC02岩心,与沃顿海盆DSDP213岩心中含沸石型深海粘土层位中的稀土元素含量相当。δCe负异常明显,(La/Yb)N为0.42,显示重稀土相对富集的特点。稀土元素与P2O5呈显著正相关性,CaO/P2O5的平均值为2.3,表明生物钙磷灰石可能是稀土元素的主要载体矿物,而铁锰水合物可能对富集稀土元素有一定的促进作用,但影响不大;GC11岩心中δCe负异常程度远低于GC02岩心,略低于DSDP213岩心,中稀土富集特征与GC02和DSDP213岩心基本一致。不同程度陆源物质的混入可能是导致以上不同岩心中稀土元素富集程度和分馏特征的主要原因。
  • 图  1  GC11岩心的采样点位置

    Fig.  1  Schematic diagram of the sampling point position of the Core GC11

    图  2  GC11岩心主量元素垂直分布特征

    Fig.  2  Vertical distribution characteristics of main elements in the Core GC11

    图  3  GC11岩心部分微量元素和稀土元素垂直分布特征

    Fig.  3  Vertical distribution characteristics of trace elements and rare earth elements in the Core GC11

    图  4  GC11岩心微量元素平均富集系数

    H2层位孔深为15 cm;H5层位孔深为55 cm

    Fig.  4  The average enrichment factors of trace elements in the Core GC11

    H2:15 cm below seafloor; H5: 55 cm below seafloor

    图  5  GC11、DSDP213和GC02岩心稀土元素平均富集系数及比较

    GC11岩心H2层位孔深为15 cm;H5层位孔深为55 cm

    Fig.  5  Average enrichment factor and comparison of rare earth elements in GC11, DSDP213 and GC02 cores

    H2:15 cm below seafloor; H5: 55 cm below seafloor

    图  6  样品稀土元素相对澳大利亚后太古代平均页岩(PAAS)归一化配分模式及与其他区域富稀土深海黏土的比较

    GC11不包括H2和H5层位;GC02位于中印度洋洋盆;DSDP213位于东印度洋沃顿海盆;以上数据均为沉积岩心的平均值, 见参考文献[5, 12]

    Fig.  6  Sample vs. post-Archean Australian Shale (PAAS) normalized partitioning pattern of rare earth elements and comparison with other regions of rare earth-rich deep sea clay

    GC11 does not include H2 and H5 horizons; GC02 is located in the central Indian Ocean Basin;DSDP213 is located in the Wharton Basin of the east Indian Ocean;the above data are average values of sedimentary cores, see references [5, 12]

    图  7  主量元素与∑REY的散点图(GC11岩心不包括H2和H5层位)

    Fig.  7  Scatter plot of the main element and ∑REY (Core GC11 excludes H2 and H5 horizons)

    图  8  印度洋不同沉积物岩心富稀土深海沉积中CaO/P2O5比值比较

    Fig.  8  Comparison of CaO/P2O5 ratios in rare earth-rich deep sea sediments from different sediment cores in the Indian Ocean

    图  9  TiO2、过剩铝(Alex)与∑REY的散点图(不包括H2和H5层位;过剩元素的计算方法参考文献[16])

    Fig.  9  Scatter plot of TiO2, Alex and ∑REY (excludes H2 and H5 horizons; calculation method for excess elements refer to referenc[16])

    图  10  GC11岩心中Y/Ho-REE散点图及与GC02、DSDP213岩心的比较

    Fig.  10  Y/Ho-REE scatter plot in GC11 core and comparison with GC02 and DSDP213 cores

    表  1  GC11岩心沉积物涂片鉴定结果

    Tab.  1  The results of smear identification of sediments in Core GC11

    序号岩心深度/cm镜下图片放大倍数描述定名
    011~210×10镜下见大量生物碎片,主要为放射虫,以及少量球状硅藻,同时可见大量的鱼牙骨和长条状沸石,几乎未见有孔虫等钙质生物,硅质生物占了视域的50%~60%黏土质放射虫软泥
    0214~1510×5镜下见大量生物碎片,主要为有孔虫壳体,同时见有放射虫碎体,亦见少量硅藻,鱼牙骨及沸石,有孔虫壳较为完整,钙质生物占视域的15%~25%, 硅质生物占视域的10%~15%含硅质和钙质黏土
    0324~2510×10镜下见大量的生物碎片,主要为放射虫壳体及鱼牙骨屑,偶见有孔虫碎体,硅质生物占视域的50%以上放射虫软泥
    0454~5510×20镜下可见大量鱼牙骨及沸石颗粒,少量的放射虫壳体(约5%),钙质生物几乎难以见到沸石黏土
    0580~8110×20镜下可见大量鱼牙骨及沸石颗粒,少量放射虫(不大于5%),钙质生物难以见到沸石黏土
    06119~12010×50镜下可见较多的沸石颗粒,鱼牙骨难以见到,偶见少量放射虫(不大于5%),钙质生物难以见到沸石黏土
    07159~16010×20镜下可见较多的沸石颗粒,鱼牙骨难以见到,偶见少量放射虫(不大于5%),钙质生物难以见到沸石黏土
    08199~20010×10镜下多见沸石颗粒,可见有少量的鱼牙骨,硅质生物及钙质生物几乎不可见沸石黏土
    下载: 导出CSV

    表  2  澳大利亚后太古代平均页岩的稀土元素含量[10]

    Tab.  2  Rare earth element content of the post-Athena average shale in Australia[10]

    元素LaCePrNdSmEuGdTbDyHoErTmYbLuY
    含量/10–638.279.68.8333.95.551.084.660.7744.680.9912.850.4052.820.43327
    下载: 导出CSV

    表  3  主量元素特征值(wt%)

    Tab.  3  Characteristic values of main elements (wt%)

    Al2O3CaOTFe2O3K2OMgOMnONa2OP2O5SiO2TiO2LOI
    平均值16.401.328.902.533.062.533.310.5649.600.7110.48
    最大值16.951.409.202.803.222.634.020.6050.780.7511.27
    最小值15.421.248.522.392.802.372.460.5148.910.669.72
    标准差0.420.030.200.140.120.080.350.030.430.030.37
    H212.321.045.952.522.251.585.510.3056.260.4611.37
    H513.571.096.162.972.021.624.040.3258.040.479.55
      注:LOI为烧失量。H2层位孔深为15 cm;H5层位孔深为55 cm。TFe2O3代表总铁含量。
    下载: 导出CSV

    表  4  GC11岩心微量元素和稀土元素含量(10-6

    Tab.  4  Contents of trace elements and rare earth elements in the Core GC11 (10-6)

    BaCoCrCsCuGaHfInLiMoNbNi
    平均值1 631205.6741.065.16441.7224.095.010.1459.5457.0113.12516.67
    最大值2 250224.0051.005.49474.0025.505.400.1671.2068.2014.30556.00
    最小值1 200182.5038.004.77386.0022.204.500.1351.2033.0011.80467.00
    标准差2679.152.690.1922.770.940.230.015.677.760.6424.14
    H21 480136.5027.004.39286.0016.703.500.1038.6020.409.90342.00
    H51 205136.5027.005.50293.0018.704.200.1142.9020.6011.40323.00
    PbRbScSrTaThUVWZnZr
    平均值80.3983.0425.89202.780.9219.812.27125.619.19146.39194.39
    最大值89.3090.6027.90215.001.0922.302.46133.0010.10152.00211.00
    最小值72.7078.6023.40190.000.7717.701.98115.008.20137.00177.00
    标准差4.563.091.357.090.101.520.144.970.604.829.25
    H265.8083.3019.20162.000.7917.752.0384.009.10112.00129.00
    H569.10107.5018.50159.500.9421.702.5882.009.00106.00145.00
      注:H2层位孔深为15 cm;H5层位孔深为55 cm。
    下载: 导出CSV

    表  5  稀土元素特征值(澳大利亚后太古代平均页岩(PAAS)归一化,PAAS数据参考文献[10])

    Tab.  5  Rare earth elements characteristic values (post-Archean Australian Shale (PAAS) normalized, PAAS data refer to reference[10])

    层位/cm∑REY/10 – 6δCeδEu(La/Gd)N(La/Yb)NLREE/MREELREE/HREEMREE/HREE
    H10~10735.560.871.080.400.534.2513.073.07
    H210~20400.641.061.040.410.584.8515.643.23
    H320~30679.220.891.070.390.524.3313.243.06
    H430~40711.970.881.100.430.564.4413.773.10
    H540~50457.121.061.020.430.584.9215.313.11
    H650~60647.700.881.070.400.554.3613.653.13
    H760~70636.130.911.080.400.564.4514.233.20
    H870~80619.320.931.110.400.594.4514.573.27
    H980~90707.860.851.080.410.544.2513.163.09
    H1090~100680.300.891.060.410.554.3713.623.12
    H11100~110682.170.831.070.390.514.1212.703.09
    H12110~120742.740.841.080.400.574.2413.753.24
    H13120~130651.930.891.080.380.514.2012.973.09
    H14130~140738.420.841.120.400.554.2613.483.16
    H15140~150635.250.881.100.400.524.3613.293.04
    H16150~160705.340.801.070.390.534.1412.963.13
    H17160~170691.360.851.110.410.564.2613.463.16
    H18170~180692.790.861.100.420.584.4414.053.16
    H19180~190707.430.851.130.420.584.3813.923.18
    H20190~200644.980.851.070.390.534.1813.133.14
    Min/400.640.801.020.380.514.1212.703.04
    Max/742.741.061.130.430.594.9215.643.27
    Ave/658.41 0.89 1.08 0.40 0.55 4.3613.703.14
    GC02/1072.170.561.130.420.633.7212.023.24
    DSDP213/628.220.811.080.410.494.2111.602.77
    下载: 导出CSV
  • [1] Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1007−1022. doi: 10.1016/0016-7037(74)90002-7
    [2] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535−539. doi: 10.1038/ngeo1185
    [3] 朱克超, 任江波, 王海峰. 太平洋中部富REY的深海沉积物的地球化学特征及化学分类[J]. 矿物学报, 2015, 35(S1): 807.

    Zhu Kechao, Ren Jiangbo, Wang Haifeng. Geochemical characteristics and chemical classification of REY-rich pelagic sediments from the central Pacific Ocean[J]. Acta Mineralogica Sinica, 2015, 35(S1): 807.
    [4] 朱克超, 任江波, 王海峰. 太平洋中部富REY深海沉积物的地球化学特征及化学分类[J]. 地球学报, 2016, 37(3): 287−293. doi: 10.3975/cagsb.2016.03.04

    Zhu Kechao, Ren Jiangbo, Wang Haifeng. Geochemical characteristics and chemical classification of REY-rich pelagic sediments from the central Pacific Ocean[J]. Acta Geoscientica Sinica, 2016, 37(3): 287−293. doi: 10.3975/cagsb.2016.03.04
    [5] 黄大松. 中印度洋洋盆沸石型深海粘土地球化学特征及其对稀土元素富集过程的指示意义[D]. 杭州: 浙江大学, 2016.

    Huang Dasong. Geochemical characteristics zeolite clay from the central Indian Ocean Basin and the implications for enrichement process of REY[D]. Hangzhou: Zhejiang University, 2016.
    [6] Mukhopadhyay R. Post-Cretaceous intraplate volcanism in the central Indian Ocean Basin[J]. Marine Geology, 1998, 151(1/4): 135−142.
    [7] Iyer S D. Evidences for incipient hydrothermal event(s) in the central Indian Basin: a review[J]. Acta Geologica Sinica, 2005, 79(1): 77−86. doi: 10.1111/j.1755-6724.2005.tb00869.x
    [8] Nath B N, Roelandts I, Sudhakar M, et al. Rare Earth element patterns of the central Indian Basin sediments related to their lithology[J]. Geophysical Research Letters, 1992, 19(12): 1197−1200. doi: 10.1029/92GL01243
    [9] 翟世奎. 海洋地质学[M]. 青岛: 中国海洋大学出版社, 2018.

    Zhai Shikui. Marine Geology[M]. Qingdao: China Ocean University Press, 2018.
    [10] McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169−200.
    [11] Rudnick R L, Gao S. Composition of the continental crust[M]//Rudnick R L. Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1−64.
    [12] Yasukawa K, Liu Hanjie, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25−36. doi: 10.1016/j.jseaes.2014.07.005
    [13] Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima area, southeastern Japan[J]. Resource Geology, 2014, 64(1): 47−57. doi: 10.1111/rge.12026
    [14] 王汾连, 何高文, 孙晓明, 等. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7): 2057−2068.

    Wang Fenlian, He Gaowen, Sun Xiaoming, et al. The host of REE + Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057−2068.
    [15] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1−14. doi: 10.1016/j.oregeorev.2012.12.001
    [16] Pattan J N, Jauhari P. Major, trace, and rare earth elements in the sediments of the central Indian Ocean Basin: Their source and distribution[J]. Marine Georesources & Geotechnology, 2001, 19(2): 85−106.
    [17] Mascarenhas-Pereira M B L, Nath B N. Selective leaching studies of sediments from a seamount flank in the central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements[J]. Marine Chemistry, 2010, 121(1/4): 49−66.
    [18] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7
    [19] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry Geophysics Geosystems, 2001, 2(4): 1021−1024.
    [20] Zhang Xiaoyu, Tao Chunhui, Shi Xuefa, et al. Geochemical characteristics of REY-rich pelagic sediments from the GC02 in central Indian Ocean Basin[J]. Journal of Rare Earths, 2017, 35(10): 1047−1058. doi: 10.1016/S1002-0721(17)61012-3
    [21] Bright C A, Cruse A M, Lyons T W, et al. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?[J]. Geochimica et Cosmochimica Acta, 2009, 73(6): 1609−1624. doi: 10.1016/j.gca.2008.12.014
    [22] Trotter J A, Barnes C R, McCracken A D. Rare earth elements in conodont apatite: Seawater or pore-water signatures?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 462: 92−100. doi: 10.1016/j.palaeo.2016.09.007
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  37
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-05-06
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回