留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海多金属硫化物瞬变电磁激电效应初探

李泽 陶春辉 朱忠民 邓显明

李泽,陶春辉,朱忠民,等. 深海多金属硫化物瞬变电磁激电效应初探[J]. 海洋学报,2019,41(12):39–50,doi:10.3969/j.issn.0253−4193.2019.12.004
引用本文: 李泽,陶春辉,朱忠民,等. 深海多金属硫化物瞬变电磁激电效应初探[J]. 海洋学报,2019,41(12):39–50,doi:10.3969/j.issn.0253−4193. 2019.12.004
Li Ze,Tao Chunhui,Zhu Zhongmin, et al. Primary study on transient electromagnetic induced polarization effects of deep-sea polymetallic sulfides[J]. Haiyang Xuebao,2019, 41(12):39–50,doi:10.3969/j.issn.0253−4193.2019.12.004
Citation: Li Ze,Tao Chunhui,Zhu Zhongmin, et al. Primary study on transient electromagnetic induced polarization effects of deep-sea polymetallic sulfides[J]. Haiyang Xuebao,2019, 41(12):39–50,doi:10.3969/j.issn.0253−4193.2019.12.004

深海多金属硫化物瞬变电磁激电效应初探

doi: 10.3969/j.issn.0253-4193.2019.12.004
基金项目: 国家重点研发计划项目(2018YFC0309901,2017YFC0306203);国家自然科学基金(41706042);国际海域资源调查与开发“十三五”课题(DY135-S1-1-01,DY135-S1-1-06)。
详细信息
    作者简介:

    李泽(1993—),男,陕西省汉中市人,主要从事深海多金属硫化物电磁法勘探研究。E-mail: lize@sio.org.cn

    通讯作者:

    陶春辉,研究员,主要从事深海多金属硫化物研究。E-mail: taochunhuimail@163.com

  • 中图分类号: P744

Primary study on transient electromagnetic induced polarization effects of deep-sea polymetallic sulfides

  • 摘要: 瞬变电磁法是深海多金属硫化物勘探的有效手段。海底多金属硫化物中高品位的金属组分会引起极强的激电效应,且对瞬变电磁响应产生显著影响。本文通过实验室测量和数值模拟对深海多金属硫化物的激电效应进行了探讨和分析。首先对西南印度洋中脊热液区的岩矿石样品进行了较为系统的电性测试,典型硫化物的复电阻率在频率域有最大达160 mrad相位移动,时间域与频率域的测量结果表明,极化率参数可以很好地区分硫化矿物与围岩。利用Cole-Cole模型对实测复电阻率进行解释,得到复电阻率的特征参数,分析各参数与块状硫化物组分和结构的关系,并根据极化率参数对典型硫化物进行了分类。将典型硫化物的激电参数用于计算层状介质的瞬变电磁响应,计算结果表明,在海底多金属硫化物矿床瞬变电磁法响应的最佳观测时窗内可同时观测到激电效应的影响。虽然在采集时窗晚期瞬变响应发生畸变,但在信号接收早期,激电效应能有效增强瞬变电磁法对深海多金属硫化物的探测能力,为瞬变电磁实测数据提供解释依据。
  • 图  1  西南印度洋脊玉皇热液区及龙旂热液区采样点分布

    红色五角星代表块状硫化物采样点,黑色圆点代表围岩采样点;BTJ代表布韦三联点;SWIR代表西南印度洋脊;SEIR代表东南印度洋脊;CIR代表中印度洋脊;RTJ代表罗德里格斯三联点

    Fig.  1  Distribution of the samples collected from Yuhuang hydrothermal vent field and Longqi hydrothermal vent field on the southwest Indian Ocean Ridge

    The red stars represent the massive sulfide sampling stations and the black dots represent the surrounding rock sampling stations; BTJ represents Bouvet Triple Junction; SWIR represents Southwest Indian Ridge; SEIR represents Southeast Indian Ridge; CIR represents Central Indian Ridge; RTJ represents Rodrigues Triple Junction

    图  2  不同岩性复电阻率特征。电阻率随频率变化(a),相位随频率变化(b)

    Fig.  2  Different lithologic complex resistivity characteristics. Resistivity changes with frequency (a), phase changes with frequency (b)

    图  3  本文实测复电阻率曲线与前人研究对比

    SMS表示海底块状硫化物

    Fig.  3  The measured complex resistivity curve in this study comparing with data from previous studies

    SMS is seafloor massive sulfide

    图  4  岩矿石激电特征与样品参数交会图

    Fig.  4  Intersection diagram of induced polarization characteristics and sample parameters of rock ores

    图  5  实测样品Cole-Cole参数分布

    Fig.  5  Cole-Cole parameter diagram of measured samples

    图  6  含硫化物岩石Cole-Cole模型拟合

    Fig.  6  Coal-Cole model fitting of sulfide-containing rock

    图  7  深海层状硫化物模型

    Fig.  7  Deep-sea layered sulfide model

    图  8  不同装置下含激电效应的瞬变电磁响应及其相对异常比值

    dB/dt:感应电压

    Fig.  8  Transient electromagnetic response and its relative anomaly ratio with induced polarization effects using different devices

    dB/dt:induced voltage

    表  1  岩矿石样品物性测量表

    Tab.  1  Physical properties of rock ore samples

    编号岩性样品孔隙度
    Φ
    饱和海水
    ρ0/Ω·m
    饱和海水
    充电率/mV·V–1
    复电阻率
    虚部/S·m–1
    Φ平均值ρ0平均值
    /Ω·m
    9含硫化物岩石(5块)胶结硫化物角砾岩15.56%11.4851.408.8×10–313.90%9.88
    57胶结硫化物角砾岩24.23%18.5449.588.1×10–3
    61块状硫化物4.01%11.6172.071.0×10–2
    62块状硫化物13.93%5.4599.123.7×10–2
    63块状硫化物11.78%2.33112.205.3×10–2
    213矿化岩石(3块)矿化蛋白石7.60%10.658.112.2×10–35.81%59.12
    217矿化玄武岩4.02%128.7150.585.8×10–4
    241矿化玄武岩5.80%38.0010.485.0×10–4
    1玄武岩(23块)玄武岩6.38%78.325.811.0×10–43.54%308.25
    7玄武岩8.52%58.166.111.9×10–4
    17玄武岩3.46%242.797.343.3×10–5
    21玄武岩2.25%418.427.461.8×10–5
    45玄武岩4.15%123.906.906.3×10–5
    69玄武岩4.94%74.558.271.3×10–4
    83玄武岩4.16%114.069.639.2×10–5
    89玄武岩3.36%42.775.432.1×10–4
    101玄武岩4.24%52.087.062.0×10–4
    105玄武岩3.06%38.045.972.3×10–4
    109玄武岩1.97%579.477.561.4×10–5
    113玄武岩4.69%42.047.153.1×10–4
    123玄武岩1.94%158.596.372.5×10–5
    129玄武岩0.82%1537.107.055.5×10–6
    137玄武岩2.43%142.825.882.8×10–5
    145玄武岩1.71%238.307.346.0×10–5
    165玄武岩2.02%326.5310.733.6×10–5
    169玄武岩3.24%76.204.797.7×10–5
    201玄武岩2.28%202.706.964.1×10–5
    211玄武岩11.02%27.849.178.0×10–4
    221玄武岩3.86%66.017.271.5×10–4
    229玄武岩0.50%1 261.0037.304.2×10–5
    267玄武岩0.51%1 188.007.609.8×10–6
    49蚀变玄武岩(7块)蚀变玄武岩5.11%108.936.925.7×10–56.74%56.36
    53蚀变玄武岩10.32%31.499.535.6×10–4
    147蚀变玄武岩3.40%68.446.281.4×10–4
    149蚀变玄武岩7.83%26.829.277.6×10–4
    下载: 导出CSV

    表  2  硫化物物性及激电特征参数

    Tab.  2  Physical properties and induced polarization effects characteristics of sulfides

    编号岩石类型$\,\rho _{}^@1\;{\rm {Hz} }(\Omega \cdot {\rm m})$孔隙度/%$m$$c$$\tau $/s
    9胶结硫化物角砾岩10.5215.560.520.340.040
    61块状硫化物13.104.010.630.3823.418
    62块状硫化物3.8813.930.880.190.870
    63块状硫化物2.1911.78100.000
      注:ρ@1 Hz(Ω·m)表示不同岩性电阻率大小的相对关系。
    下载: 导出CSV
  • [1] Rona P A. Resources of the sea floor[J]. Science, 2003, 299(5607): 673−674. doi: 10.1126/science.1080679
    [2] Cathles L M. What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits[J]. Mineralium Deposita, 2011, 46(5/6): 639−657.
    [3] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155−1158. doi: 10.1130/G32468.1
    [4] Tao Chunhui, Lin Jian, Guo Shiqin, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1): 47−50. doi: 10.1130/G32389.1
    [5] Tao Chunhui, Wu Tao, Jin Xiaobing, et al. Petrophysical characteristics of rocks and sulfides from the SWIR hydrothermal field[J]. Acta Oceanologica Sinica, 2013, 32(12): 118−125. doi: 10.1007/s13131-013-0367-4
    [6] Spagnoli G, Hannington M, Bairlein K, et al. Electrical properties of seafloor massive sulfides[J]. Geo-Marine Letters, 2016, 36(3): 235−245. doi: 10.1007/s00367-016-0439-5
    [7] Revil A, Florsch N, Mao Deqiang. Induced polarization response of porous media with metallic particles—Part 1: a theory for disseminated semiconductors[J]. Geophysics, 2015, 80(5): D525−D538. doi: 10.1190/geo2014-0577.1
    [8] Komori S, Masaki Y, Tanikawa W, et al. Depth profiles of resistivity and spectral IP for active modern submarine hydrothermal deposits: a case study from the Iheya North Knoll and the Iheya Minor Ridge in Okinawa Trough, Japan[J]. Earth, Planets and Space, 2017, 69(1): 114. doi: 10.1186/s40623-017-0691-6
    [9] Zhdanov M S, Burtman V, Endo M, et al. Complex resistivity of mineral rocks in the context of the generalised effective-medium theory of the induced polarisation effect[J]. Geophysical Prospecting, 2018, 66(4): 798−817. doi: 10.1111/1365-2478.12581
    [10] Liao Shili, Tao Chunhui, Li Huaiming, et al. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Ore Geology Reviews, 2018, 96: 13−27. doi: 10.1016/j.oregeorev.2018.04.007
    [11] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of the AIME, 2007, 146(1): 54−62.
    [12] Dias F B, Plomp L, Veldhuis J B J. Trends in polymer electrolytes for secondary lithium batteries[J]. Journal of Power Sources, 2000, 88(2): 169−191. doi: 10.1016/S0378-7753(99)00529-7
    [13] Swidinsky A, Hölz S, Jegen M. On mapping seafloor mineral deposits with central loop transient electromagnetics[J]. Geophysics, 2012, 77(3): E171−E184. doi: 10.1190/geo2011-0242.1
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  22
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-15
  • 修回日期:  2019-03-13
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回