留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江河口及邻近海域表层沉积物中铁溶解和磷释放活性的动力学表征

肖丽 王迪 马伟伟 李文君 李铁 朱茂旭

肖丽,王迪,马伟伟,等. 长江河口及邻近海域表层沉积物中铁溶解和磷释放活性的动力学表征[J]. 海洋学报,2019,41(12):1–13,doi:10.3969/j.issn.0253−4193.2019.12.001
引用本文: 肖丽,王迪,马伟伟,等. 长江河口及邻近海域表层沉积物中铁溶解和磷释放活性的动力学表征[J]. 海洋学报,2019,41(12):1–13,doi:10.3969/j.issn.0253−4193.2019.12.001
Xiao Li,Wang Di,Ma Weiwei, et al. Kinetic characterization of reactivity of iron dissolution and phosphorus release in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea[J]. Haiyang Xuebao,2019, 41(12):1–13,doi:10.3969/j.issn.0253−4193.2019.12.001
Citation: Xiao Li,Wang Di,Ma Weiwei, et al. Kinetic characterization of reactivity of iron dissolution and phosphorus release in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea[J]. Haiyang Xuebao,2019, 41(12):1–13,doi:10.3969/j.issn.0253− 4193.2019.12.001

长江河口及邻近海域表层沉积物中铁溶解和磷释放活性的动力学表征

doi: 10.3969/j.issn.0253-4193.2019.12.001
基金项目: 国家自然科学基金(41576078,41776085);国家重点研发计划项目(2016YFA0601301)。
详细信息
    作者简介:

    肖丽(1991—),女,山西省岚县人,主要从事海洋化学研究。E-mail: 464690782@qq.com

    通讯作者:

    朱茂旭(1967—),男,湖南省澧县人,教授,主要从事海洋化学研究。E-mail: zhumaoxu@ouc.edu.cn

  • 中图分类号: P714+.4

Kinetic characterization of reactivity of iron dissolution and phosphorus release in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea

  • 摘要: 运用溶解动力学实验及活性连续体模型表征了长江河口至东海邻近海域表层沉积物中铁(Fe)和磷(P)的活性。通过动力学数据拟合得到了活性组分的理论含量m0和表观速率常数k。结果表明,Fe(Ⅱ)普遍存在于表层沉积物中,这应是高活性有机络合态Fe(Ⅲ)絮凝/沉淀到沉积物中后快速还原的结果。沉积物中黏土及总有机碳(TOC)含量对Fe(Ⅱ)的m0及其k值起重要控制作用。从长江河口至邻近海域沉积物中Fe(Ⅱ)均以FeCO3形态为主,FeCO3的溶解及与之相结合磷(主要为交换态P和自生P)的释放导致Fe(Ⅱ)和P具有相似的溶解动力学特征。与吸附于Fe(Ⅱ)矿物相的P相比,与Fe(Ⅱ)矿物相共沉淀的P的m0较高,但k较低。与TOC含量较低的粗粒沉积物中的Fe(Ⅲ)相比,TOC含量较高的细粒沉积物中Fe(Ⅲ)的m0值较小,但k值较大。以上特征是Fe不同的氧化还原过程导致的。Fe(Ⅲ)氧化物的含量(m0)和活性(k)总体上控制着与之相结合P的含量(m0)及溶解活性(k)。虽然传统活性Fe形态分析未能揭示出长江河口沉积物中活性Fe的富集作用,但溶解动力学表征结果表明,Fe的絮凝/沉淀导致河口沉积物中活性Fe的明显富集,且该过程主要发生在盐度明显增加的低盐度河口区。
  • 图  1  沉积物采样站位图

    Fig.  1  Stations of sediment sampling

    图  2  表层沉积物组成分类(根据碎屑沉积物分类方法[27]

    Fig.  2  Classification of surface sediments (according to classification of clastic sediments[27])

    图  3  pH 3.0盐酸溶液中Fe(Ⅱ)及Fe(Ⅱ)结合态P(Fe(Ⅱ)-P)的溶解动力学曲线,圆点为实测数据,曲线为模型拟合线(a,b);各站位动力学参数(m0为酸可溶解释放的理论含量,k为溶解速率常数)、底水盐度、黏土比例及总有机碳含量(c~f)。红色柱状图表示该站位(C3、C4、C6和C7)的动力学参数与其他站位具有明显差异

    Fig.  3  Time dependent Fe(Ⅱ) dissolution and simultaneous release of Fe(Ⅱ)-associated phosphorus in HCl solution at pH 3.0, dots: measured results, curves: fitting to the reactive continuum model (a, b). Kinetic parameters (theoretical amounts m0 and apparent rate constant k) together with bottom-water salinity, clay fraction, and total organic carbon content at each sampling site (c–f). Obvious differences of kinetic parameters at sites C3, C4, C6, and C7 in comparison with other sites are indicated by red color column

    图  4  pH 3.0的盐酸+抗坏血酸溶液中Fe(Ⅲ)还原性溶解及Fe(Ⅲ)结合态P(Fe(Ⅲ)-P)溶解动力学曲线,圆点为实测数据,曲线为模型拟合线(a,b);各站位动力学参数(酸可溶解释放的理论含量m0,溶解速率常数k)、底水盐度、黏土比例及总有机碳含量(c~f)。红色柱状图表示该站位(C3、C4、C6和C7)的动力学参数与其他站位具有明显差异

    Fig.  4  Time dependent Fe(Ⅲ) reductive dissolution and simultaneous release of Fe(Ⅲ)-associated phosphorus in HCl+ascorbic acid solution at pH 3.0, dots: measured results, curves: fitting to the reactive continuum model (a, b). Kinetic parameters (theoretical amounts m0 and apparent rate constant k) together with bottom-water salinity, clay fraction and total organic carbon content at each sampling site (c−f). Obvious differences of kinetic parameters at sites C3, C4, C6, and C7 in comparison with other sites are indicated by red color column

    图  5  pH 7.5抗坏血酸缓冲溶液中Fe(Ⅲ)的还原性溶解动力学曲线,圆点为实测数据,曲线为模型拟合线(a);各站位动力学参数(酸可溶解释放的理论含量m0,溶解速率常数k)、底水盐度、黏土比例及总有机碳含量(b,c)。红色柱状图表示该站位(C3、C4、C6和C7)的动力学参数与其他站位具有明显差异

    Fig.  5  Time dependent Fe(Ⅲ) reductive dissolution in ascorbic acid solution buffered at pH 7.5 (a), dots: measured results, curves: fitting to the reactive continuum model. Kinetic parameters (theoretical amounts m0 and apparent rate constant k) together with bottom-water salinity, clay fraction, and total organic carbon content at each sampling site (b, c). Obvious differences of kinetic parameters at sites C3, C4, C6, and C7 in comparison with other sites are indicated by red color column

    图  6  Fe(Ⅱ)-m0及Fe(Ⅱ)-k与总有机碳含量和黏土比例之间的相关性

    m0为酸可溶解释放的理论含量,k为表观溶解速率常数k

    Fig.  6  Correlations of Fe(Ⅱ)-m0 with total organic carbon (a) and clay fraction (b), correlations of Fe(Ⅱ)-k with total organic carbon (c) and clay fraction (d)

    m0 is theoretical amounts, k is apparent rate constant

    图  7  Fe(Ⅱ)和Fe(Ⅱ)结合态P动力学释放量之间的对应关系(a)以及Fe(Ⅱ)-P-m0与Fe(Ⅱ)-m0、Ex-P和Au-P之间的相关性(b~d)

    m0为酸可溶解释放的理论含量;Ex-P为交换态或弱吸附态磷P;Au-P为自生磷

    Fig.  7  Correlations of kinetic Fe(Ⅱ) dissolution with simultaneous P release (a), and correlations of Fe(Ⅱ)-P-m0 with Fe(Ⅱ)-m0, Ex-P and Au-P(b–d)

    m0 is theoretical amounts; Ex-P is exchangeable or weakly adsorbed phosphorus; Au-P is authigenic phosphorus

    图  8  Fe(Ⅲ)-P-m0与Fe(Ⅲ)-m0和Fe-P与Fe(Ⅲ)-P-m0之间的相关性

    Fe(Ⅲ)-P为与Fe(Ⅲ)同时释放的P;Fe-P为Fe结合态P;m0,酸可溶解释放的理论含量

    Fig.  8  Correlations of Fe(Ⅲ)-P-m0 versus Fe(Ⅲ)-m0 and Fe-P versus Fe(Ⅲ)-P-m0

    Fe(Ⅲ)-P is phosphorus that is simultaneously released with Fe(III) reductive dissolution ; Fe-P is Fe-associated phosphorus; m0 is theoretical amounts

    图  9  各站位 [Fe(Ⅱ)-m0 + Fe(Ⅲ)-m0]/FeHR (a) 或7.5-Fe(Ⅲ)-m0/FeHR (b) 以及底水盐度、黏土比例、总有机碳含量

    m0为酸可溶解释放的理论含量;FeHR为总活性铁Fe;7.5-Fe(Ⅲ)-m0为pH为7.5条件下可还原性溶解的Fe(Ⅲ) ;红色柱状图表示该站位(C3、C4、C6和C7)的[Fe(Ⅱ)-m0 + Fe(Ⅲ)-m0]/FeHR]或7.5-Fe(Ⅲ)-m0/FeHR比值与其他站位具有明显差异

    Fig.  9  [Fe(Ⅱ)-m0 + Fe(Ⅲ)-m0]/FeHR] ratio (a) or 7.5-Fe(Ⅲ)-m0/FeHR ratio (b) together with bottom-water salinity, clay fraction, and total organic carbon content at each sampling site.

    m0 is theoretical amounts; FeHR is total amount of highly reactive Fe; 7.5-Fe(III)-m0 is Fe(III) that is capable of reductive dissolution at pH 7.5; Obvious differences of [Fe(Ⅱ)-m0 + Fe(Ⅲ)-m0]/FeHR] ratio (a) or 7.5-Fe(Ⅲ)-m0/FeHR ratios at sites C3, C4, C6, and C7 in comparison with other sites are indicated by red color column

    表  1  采样点及沉积物相关物理和化学参数

    Tab.  1  Physical and chemical parameters of sampling sites and sediment samples

    参数C2C3C4C6C7C8A6-1A6-2A6-4A6-6A6-8A6-10
    底水盐度0.150.140.140.140.150.254.7614.4121.2831.2132.1732.36
    TOC/%0.390.120.170.120.150.630.430.730.570.640.390.33
    黏土/%19.66.078.735.324.4128.219.630.120.323.011.69.41
    粉砂/%73.418.123.112.511.071.353.669.873.374.718.817.1
    砂/%7.0575.868.282.284.60.4726.70.096.382.3669.673.5
    FeT/%3.282.432.482.673.114.313.244.643.744.062.972.60
    FeHR/μmol·g−1188193202190203205228206212212191146
    Ex-P/μmol·g−11.130.850.870.870.951.671.211.281.391.661.241.27
    Fe-P/μmol·g−13.9010.86.918.5612.47.414.243.943.342.264.003.53
    Au-P/μmol·g−14.221.922.742.491.945.134.095.754.434.662.472.28
      注:FeT代表总Fe含量;FeHR代表总活性Fe;Ex-P代表交换态或弱吸附态P;Fe-P代表Fe结合态P;Au-P代表自生P。
    下载: 导出CSV
  • [1] Dai Minhan, Martin J M. First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 127−141.
    [2] Burban P Y, Lick W, Lick J. The flocculation of fine-grained sediments in estuarine waters[J]. Journal of Geophysical Research: Oceans, 1989, 94(C6): 8323−8330. doi: 10.1029/JC094iC06p08323
    [3] Li Chao, Yang Shouye, Lian Ergang, et al. Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: iron cycle and paleoenvironmental implications[J]. Quaternary International, 2017, 452: 116−128. doi: 10.1016/j.quaint.2016.07.014
    [4] Meng Jia, Yu Zhigang, Yao Qingzhen, et al. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary[J]. Marine Chemistry, 2015, 168: 124−134. doi: 10.1016/j.marchem.2014.09.016
    [5] Jilbert T, Asmala E, Schröder C, et al. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments[J]. Biogeosciences, 2018, 15(4): 1243−1271. doi: 10.5194/bg-15-1243-2018
    [6] Sholkovitz E R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 831−845. doi: 10.1016/0016-7037(76)90035-1
    [7] Herzog S D, Persson P, Kritzberg E S. Salinity effects on iron speciation in boreal river waters[J]. Environmental Science & Technology, 2017, 51(17): 9747−9755.
    [8] Forsgren G, Jansson M, Nilsson P. Aggregation and sedimentation of iron, phosphorus and organic carbon in experimental mixtures of freshwater and estuarine water[J]. Estuarine, Coastal and Shelf Science, 1996, 43(2): 259−268. doi: 10.1006/ecss.1996.0068
    [9] Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006.
    [10] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200. doi: 10.1038/nature10855
    [11] Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3/4): 209−221.
    [12] Zhu Maoxu, Hao Xiaochen, Shi Xiaoning, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf[J]. Applied Geochemistry, 2012, 27(4): 892−905. doi: 10.1016/j.apgeochem.2012.01.004
    [13] Larsen O, Postma D, Jakobsen R. The reactivity of iron oxides towards reductive dissolution with ascorbic acid in a shallow sandy aquifer (Rømø, Denmark)[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 4827−4835. doi: 10.1016/j.gca.2006.03.027
    [14] Postma D. The reactivity of iron oxides in sediments: a kinetic approach[J]. Geochimica et Cosmochimica Acta, 1993, 57(21/22): 5027−5034.
    [15] Christoffersen J, Christoffersen M R. The kinetics of dissolution of calcium sulphate dihydrate in water[J]. Journal of Crystal Growth, 1976, 35(1): 79−88. doi: 10.1016/0022-0248(76)90247-5
    [16] Meng Jia, Yao Peng, Yu Zhigang, et al. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf[J]. Estuarine, Coastal and Shelf Science, 2014, 144: 27−38. doi: 10.1016/j.ecss.2014.04.015
    [17] Chen Liangjin, Zhu Maoxu, Yang Guipeng, et al. Reductive reactivity of iron(Ⅲ) oxides in the East China Sea sediments: characterization by selective extraction and kinetic dissolution[J]. PLoS One, 2013, 8(11): e80367. doi: 10.1371/journal.pone.0080367
    [18] 朱茂旭, 范长清, 杨桂朋, 等. 东海沉积物中铁(Ⅲ)氧化物还原活性的动力学表征[J]. 海洋学报, 2012, 34(4): 67−76.

    Zhu Maoxu, Fan Changqing, Yang Guipeng, et al. Kinetic characterization of reductive reactivity of iron(Ⅲ) oxides in sediments of the East China Sea[J]. Haiyang Xuebao, 2012, 34(4): 67−76.
    [19] Larsen O, Postma D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1367−1379. doi: 10.1016/S0016-7037(00)00623-2
    [20] Boudreau B P, Ruddick B R. On a reactive continuum representation of organic matter diagenesis[J]. American Journal of Science, 1991, 291(5): 507−538. doi: 10.2475/ajs.291.5.507
    [21] Christoffersen J. Kinetics of dissolution of calcium hydroxypatite: Ⅲ. Nucleation-controlled dissolution of a polydisperse sample of crystals[J]. Journal of Crystal Growth, 1980, 49(1): 29−44. doi: 10.1016/0022-0248(80)90057-3
    [22] van Der Zee C, van Raaphorst W. Manganese oxide reactivity in North Sea sediments[J]. Journal of Sea Research, 2004, 52(2): 73−85. doi: 10.1016/j.seares.2003.10.005
    [23] Hyacinthe C, van Cappellen P. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity[J]. Marine Chemistry, 2004, 91(1/4): 227−251.
    [24] Postma D, Jessen S, Hue N T M, et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3367−3381. doi: 10.1016/j.gca.2010.03.024
    [25] Zhang Jiazhong, Guo Laodong, Fischer C J. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie River Delta, the Chukchi Sea and the Bering Sea: importance of detrital apatite[J]. Aquatic Geochemistry, 2010, 16(3): 353−371. doi: 10.1007/s10498-009-9081-4
    [26] Hyacinthe C, Bonneville S, van Cappellen P. Reactive iron(III) in sediments: chemical versus microbial extractions[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4166−4180. doi: 10.1016/j.gca.2006.05.018
    [27] Folk R L. Petrology of Sedimentary Rocks[M]. Austin: Hemphill Publishing Company, 1980.
    [28] Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3/4): 203−221.
    [29] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[M]//Schink B. Advances in Microbial Ecology. New York: Advances in Microbial Ecology, 2000.
    [30] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867−3883. doi: 10.1016/0016-7037(93)90340-3
    [31] Yu Changxun, Virtasalo J J, Karlsson T, et al. Iron behavior in a northern estuary: large pools of non-sulfidized Fe(Ⅱ) associated with organic matter[J]. Chemical Geology, 2015, 413: 73−85. doi: 10.1016/j.chemgeo.2015.08.013
    [32] Taillefert M, Beckler J S, Cathalot C, et al. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: part II-Iron-sulfur coupling[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 142: 151−166. doi: 10.1016/j.dsr2.2017.06.009
    [33] Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1−220. doi: 10.7185/geochempersp.1.1
    [34] Kleber M, Eusterhues K, Keiluweit M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[M]//Sparks D L. Advances in Agronomy. Amsterdam: Elsevier, 2015: 1-140.
    [35] Nickel M, Vandieken V, Brüchert V, et al. Microbial Mn(IV) and Fe(Ⅲ) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(20/21): 2390−2398.
    [36] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643−645. doi: 10.1038/296643a0
    [37] Bebie J, Schoonen M A A, Fuhrmann M, et al. Surface charge development on transition metal sulfides: an electrokinetic study[J]. Geochimica et Cosmochimica Acta, 1998, 62(4): 633−642. doi: 10.1016/S0016-7037(98)00058-1
    [38] Rozan T F, Taillefert M, Trouwborst R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnology and Oceanography, 2002, 47(5): 1346−1354. doi: 10.4319/lo.2002.47.5.1346
    [39] Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: constraints from solid-phase sulfur speciation and stable sulfur isotope[J]. Continental Shelf Research, 2013, 54: 24−36. doi: 10.1016/j.csr.2013.01.002
    [40] Zhu Maoxu, Chen Keke, Yang Guipeng, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2811−2828. doi: 10.1002/2016JG003391
    [41] Ma Weiwei, Zhu Maoxu, Yang Guipeng, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400−410. doi: 10.1016/j.marpolbul.2017.07.056
    [42] Kraal P, Burton E D, Rose A L, et al. Sedimentary iron-phosphorus cycling under contrasting redox conditions in a eutrophic estuary[J]. Chemical Geology, 2015, 392: 19−31. doi: 10.1016/j.chemgeo.2014.11.006
    [43] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[M]. 3rd ed. New York: Wiley, 1996.
    [44] Zhu Maoxu, Chen Liangjin, Yang Guipeng, et al. Kinetic characterization on reductive reactivity of iron(III) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: implications for microbial iron reduction[J]. Applied Geochemistry, 2014, 42: 16−26. doi: 10.1016/j.apgeochem.2014.01.001
    [45] Fan D J, Neuser R D, Sun X G, et al. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River[J]. Geo-Marine Letters, 2008, 28(1): 7−14. doi: 10.1007/s00367-007-0084-0
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  37
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-20
  • 修回日期:  2019-12-17
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回