留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口表层沉积物重矿物在不同粒级中的分布与研究意义

王孟瑶 金秉福 岳伟

王孟瑶,金秉福,岳伟. 长江口表层沉积物重矿物在不同粒级中的分布与研究意义[J]. 海洋学报,2019,41(11):89–100,doi:10.3969/j.issn.0253−4193.2019.11.009
引用本文: 王孟瑶,金秉福,岳伟. 长江口表层沉积物重矿物在不同粒级中的分布与研究意义[J]. 海洋学报,2019,41(11):89–100,doi:10.3969/j.issn. 0253−4193.2019.11.009
Wang Mengyao,Jin Bingfu,Yue Wei. Patterns of heavy mineral combination in different grain-size categories and their sedimentary significance: A case study for surfical sediments in the Changjiang River Estuary[J]. Haiyang Xuebao,2019, 41(11):89–100,doi:10.3969/j.issn.0253−4193.2019.11.009
Citation: Wang Mengyao,Jin Bingfu,Yue Wei. Patterns of heavy mineral combination in different grain-size categories and their sedimentary significance: A case study for surfical sediments in the Changjiang River Estuary[J]. Haiyang Xuebao,2019, 41(11):89–100,doi:10.3969/j.issn.0253−4193. 2019.11.009

长江口表层沉积物重矿物在不同粒级中的分布与研究意义

doi: 10.3969/j.issn.0253-4193.2019.11.009
基金项目: 国家自然科学基金项目(41576057,41706048)。
详细信息
    作者简介:

    王孟瑶(1992—),女,山东省莒县人,研究方向为河口海岸过程分析与应用。E-mail:wmy1327@126.com

    通讯作者:

    金秉福(1963—),男,教授,主要从事海洋地质研究。E-mail:bfjin@126.com

  • 中图分类号: P736.22

Patterns of heavy mineral combination in different grain-size categories and their sedimentary significance: A case study for surfical sediments in the Changjiang River Estuary

  • 摘要: 在粒度分析基础上,以0.5Φ为间距对长江口表层沉积物的不同粒级分样进行碎屑重矿物分析,并对各粒级重矿物特征与广粒级(1.5Φ~6Φ)进行相似度分析。结果表明,长江口沉积物粒度跨度大,从粗砂到泥(黏土)均有分布,粉砂含量高。样内不同粒级分样重矿物含量、种类和组合均有一定变化,样间表现出较一致的规律性。长江口出现碎屑重矿物30种左右,粗粒级分样中矿物种数为10余种,细粒级分样中重矿物种类增至20多种;3.5Φ~4.5Φ是重矿物种类多、矿物成分复杂的粒级区段。粗粒级(粒径大于3Φ)云母族富集,其重矿物组合为云母+角闪石,随粒级变细(粒径小于4Φ)云母急剧减少;闪石族分布粒级广泛,在3Φ~5Φ粒级含量相对较高;帘石族、稳定矿物尤其是金属矿物在粒径小于3.5Φ粒级逐渐增多。长江口重矿物整体组合为普通角闪石+绿帘石+褐铁矿,榍石为特征矿物。相似度分析表明,长江口沉积物样品中主要粒级与广粒级重矿物特征相近,能代表沉积物整体重矿物特征。长江口碎屑重矿物特征深受粒度分布的影响,其矿物种类、矿物组合和矿物指数及其所蕴含的水动力和物源意义都要结合粒度特征来综合分析。
  • 图  1  长江口沉积物采样站位

    Fig.  1  Changjiang River Estuary sediments sampling stations

    图  2  长江表层沉积物粒度频率分布与主要重矿物在不同粒级中的含量

    FSC为粒度频率分布曲线,CJN3等为样品编号,短虚线对应Φ值为粒度平均值Mz,长虚线范围内为3Φ~4Φ传统矿物分析粒级区段,矿物百分含量为主要重矿物族类的颗粒百分比,粒级百分含量为不同粒级的重量百分比

    Fig.  2  Grain-size content and major heavy minerals content in the multiple grains of the Changjiang River Estuary surface sediments

    FSC is particle size frequency distribution curve, CJN3 et al are the sample numbers, the short dotted lines correspond Φ values for the average particle size (Mz), the long dotted line represents the traditional mineral analysis grain size (3Φ–4Φ), the percentage of mineral is the volume content of major heavy minerals, the percentage of grain size is the weight percentage of different grain size

    图  3  三端元矿物类在不同粒级的含量变化趋势

    不稳定矿物包括:普通角闪石、阳起石、普通辉石、透辉石、紫苏辉石、黑云母、水黑云母;稳定矿物包括:锆石、金红石、电气石、石榴石、磷灰石、榍石;铁质金属矿物包括:钛铁矿、磁铁矿、赤铁矿、褐铁矿;图中小三角图以样品CJT2为例,其中圆圈大小代表颗粒粒径大小

    Fig.  3  Trends of triad minerals at different particle sizes

    Unstable minerals include hornblende, actinolite, augite, diopside, hypersthene, biotite, hydrobiotite; stable minerals include ziron, rutile, tourmaline, garnet, apatite, sphene; Fe-metallic minerals include ilmenite, magnetite, hematite, and lignite; small triangular chart takes the CJT2 as representative sample of the Changjiang River; the circle size represents the particle size

    表  1  长江口表层沉积物粒度参数

    Tab.  1  Grain size parameters of the Changjiang River Estuary surface sediments

    CJG3CJT2CJT3CJJ2CJN1CJN2CJN3CJN4CJC4
    平均粒径(Φ)4.856.202.676.255.954.623.144.865.13
    标准偏差1.110.600.450.541.280.850.440.640.78
    偏态0.42−0.280.61−0.130.370.290.570.210.35
    峰态0.901.580.951.171.151.371.491.641.07
    下载: 导出CSV

    表  2  长江口沉积物典型粒级主要重矿物含量及其矿物指数

    Tab.  2  Major heavy minerals contents and mineral indexes of typical grain sizes sediments in the Changjiang River Estuary

    样品编号粒级范围(Φ)粒级含量
    /%
    重矿物含量
    /%
    重矿物种
    类数
    闪石族
    /%
    帘石族
    /%
    云母族
    /%
    铁质金属
    矿物类/%
    稳定矿物类
    /%
    SM/UMZTR
    CJT3广粒级(1.5~5.0)90.444.732377.949.523.594.171.930.010.03
    优势粒级(2.0~2.5)52.223.451286.254.385.001.880.630.010.00
    次优粒级(<2.0)22.990.73949.852.4841.185.570.000.000.00
    常用粒级(3.0~4.0)2.6236.581963.9317.560.0010.565.060.042.10
    CJN3广粒级(2.0~6.0)99.867.922769.689.552.7210.194.510.040.33
    优势粒级(2.5~3.0)53.253.041570.904.9018.383.221.070.010.00
    次优粒级(3.5~4.0)21.1518.841966.1211.590.7611.595.790.090.50
    常用粒级(3.0~4.0)42.0415.542170.5210.460.759.734.740.060.44
    CJN2广粒级(2.0~6.0)89.264.552556.2915.122.9515.124.980.111.33
    优势粒级(3.5~4.0)32.285.402071.098.794.477.602.530.030.15
    次优粒级(4.0~4.5)18.727.481851.2919.481.4316.914.580.090.29
    常用粒级(3.0~4.0)34.275.622068.1410.343.999.442.790.030.20
    CJG3广粒级(1.5~6.0)81.423.242462.4214.435.976.386.290.100.65
    优势粒级(3.5~4.0)28.523.822176.1810.675.212.982.230.030.25
    次优粒级(4.0~4.5)16.185.412057.5419.101.267.299.050.150.75
    常用粒级(3.0~4.0)40.982.592074.469.688.232.932.020.020.27
    CJN4广粒级(2.5~6.0)91.522.002659.7418.395.107.524.130.130.71
    优势粒级(4.5~5.0)40.763.472552.8922.991.699.038.600.160.85
    次优粒级(4.0~4.5)22.410.951663.5414.363.597.733.870.060.00
    常用粒级(3.0~4.0)9.601.361557.154.5228.865.151.190.010.00
    CJC4广粒级(2.0~6.0)97.800.332441.6721.623.8613.8611.720.231.18
    优势粒级(4.0~4.5)42.330.252246.2222.145.279.148.790.181.05
    次优粒级(5.0~6.0)25.010.152232.1822.611.0621.5414.630.452.19
    常用粒级(3.0~4.0)6.130.302062.3713.797.667.893.000.030.12
    CJN1广粒级(2.5~6.0)58.971.402448.9319.863.4213.928.430.200.91
    优势粒级(5.0~6.0)28.840.381726.9422.600.0028.3215.300.572.74
    次优粒级(4.5~5.0)22.444.292155.4518.283.3010.068.220.050.00
    常用粒级(3.0~4.0)2.321.861960.507.689.5417.882.550.050.00
    CJT2广粒级(1.5~6.0)64.060.972443.4714.1810.2217.837.880.161.41
    优势粒级(5.0~6.0)51.610.992430.7016.458.4225.6510.750.292.48
    次优粒级(4.0~4.5)3.734.022355.1016.332.2412.866.730.122.04
    常用粒级(3.0~4.0)4.564.562067.678.8710.886.093.100.040.58
    CJJ2广粒级(1.5~6.0)63.430.732337.3124.545.0918.089.870.160.40
    优势粒级(5.0~6.0)48.821.142233.6126.113.8919.7210.830.290.56
    次优粒级(4.0~4.5)7.611.582153.2623.372.7210.877.340.241.18
    常用粒级(3.0~4.0)1.621.771843.883.8138.8310.341.370.010.14
      注:表中广粒级粒级含量是指各个分粒级累计含量;广粒级重矿物含量是指各个分粒级重矿物含量加权值;SM/UM为稳定矿物/不稳定矿物的比值,ZTR为锆石、电气石、金红石所占颗粒百分含量之和,代表重矿物的成熟度。
    下载: 导出CSV

    表  3  长江口典型样品重矿物相似度分析

    Tab.  3  Analysis of heavy mineral similarity of typical samples in the Changjiang River Estuary

    样品/广粒级(Φ)优势粒级(Φ)/相似度次优粒级(Φ)/相似度常用粒级(Φ)/相似度
    CJT3/1.5~5.02.0~2.5/0.996<2/0.8533.0~4.0/0.982
    CJN3/2.0~6.02.5~3.0/0.9803.5~4.0/0.9983.0~4.0/1.000
    CJN2/2.0~6.03.5~4.0/0.9854.0~4.5/0.9923.0~4.0/0.991
    CJG3/1.5~6.03.5~4.0/0.9934.0~4.5/0.9823.0~4.0/0.988
    CJN4/2.0~6.04.5~5.0/0.9884.0~4.5/0.9973.0~4.0/0.920
    CJC4/2.0~6.04.0~4.5/0.9915.0~6.0/0.9503.0~4.0/0.946
    CJN1/2.0~6.05.0~6.0/0.8864.5~5.0/0.9943.0~4.0/0.950
    CJT2/1.5~6.05.0~6.0/0.9554.0~4.5/0.9493.0~4.0/0.880
    CJJ2/1.5~6.05.0~6.0/0.9944.5~5.0/0.9543.0~4.0/0.722
    下载: 导出CSV
  • [1] 水利部长江水利委员会. 长江流域及西南诸河水资源公报[M]. 武汉: 长江出版社, 2008.

    Changjiang Water Resources Commission. Bulletin of the Yangtze River Basin and the Southwestern Rivers[M]. Wuhan: Changjiang Press, 2008.
    [2] 水利部长江水利委员会. 长江泥沙公报(2013)[M]. 武汉: 长江出版社, 2014.

    Changjiang Water Resources Commission. Changjiang River Sediment Bulletin (2013)[M]. Wuhan: Changjiang Press, 2014.
    [3] 程天文, 赵楚年. 我国主要河流入海径流量、输沙量及对沿岸的影响[J]. 海洋学报, 1985, 7(4): 460−471.

    Chen Tianwen, Zhao Chutian. Chinese major rivers entering the sea, runoff, sediment transport and impact on the coast[J]. Haiyang Xuebao, 1985, 7(4): 460−471.
    [4] Yue Wei, Jin Bingfu, Zhao Baocheng. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of theYangtze Delta[J]. Sedimentary Geology, 2018, 364: 42−52. doi: 10.1016/j.sedgeo.2017.12.006
    [5] Dong Linsen, Shi Xuefa, Liu Yanguang, et al. Mineralogical study of surface sediments in the west Arctic Ocean and their implications for material sources[J]. Advances in Polar Science, 2014, 25(3): 192−203.
    [6] Sevastjanova I, Hall R, Alderton D. A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia[J]. Sedimentary Geology, 2012, 280: 179−194. doi: 10.1016/j.sedgeo.2012.03.007
    [7] 王昆山, 姜晓黎, 叶青, 等. 南黄海潮流沙脊区表层沉积物重矿物分布及来源[J]. 海洋地质与第四纪地质, 2013, 33(5): 1−11.

    Wang Kunshan, Jiang Xiaoli, Ye Qing, et al. Distribution and source of heavey minerals in the surface sediment of the tidals and ridges area in South Yellow Sea[J]. Marine Geology and Quaternary Geology, 2013, 33(5): 1−11.
    [8] 贾军涛, 郑洪波, 杨守业. 长江流域岩体的时空分布与碎屑锆石物源示踪[J]. 同济大学学报: 自然科学版, 2010, 38(9): 1375−1380.

    Jia Juntao, Zheng Hongbo, Yang Shouye. Temporal and spatial distribution of rock mass in the Yangtze River basin and zircon source tracing[J]. Journal of Tongji University: Natural Science, 2010, 38(9): 1375−1380.
    [9] 吕全荣, 严肃庄. 长江河口重矿物组合的研究及其意义[J]. 华东师范大学学报: 自然科学版, 1981(1): 73−83.

    Lv Quanrong, Yan Suzhuang. A study of mineral groups in the Changjiang estuarine region and their significance[J]. Journal of East China Normal University: Natural Science, 1981(1): 73−83.
    [10] 吕全荣. 长江口细颗粒沉积物的矿物特征和沉积分异[J]. 上海地质, 1992(3): 18−25, 40.

    Lv Quanrong. Mineral characteristics offine: mgrain sediment and its sedimentary differentiation in Changjiang Estuary[J]. Shanghai Geology, 1992(3): 18−25, 40.
    [11] 王腊春, 陈晓玲, 储同庆. 黄河、长江泥沙特性对比分析[J]. 地理研究, 1997(4): 72−80.

    Wang Lachun, Chen Xiaoling, Chu Tongqing. A contrast analysis on the loads character of the Changjiang River and the Yellow River[J]. Geographical Research, 1997(4): 72−80.
    [12] 王昆山, 王国庆, 蔡善武, 等. 长江水下三角洲沉积物的重矿物分布及组合[J]. 海洋地质与第四纪地质, 2007(1): 7−12.

    Wang Kunshan, Wang Guoqing, Cai Shanwu, et al. Heavy mineral characteristicsof surface sediments in the subaqueous Yangtze River Delta[J]. Marine Geology & Quaternary Geology, 2007(1): 7−12.
    [13] 国家标准化管理委员会. 海洋调查规范[M]. 北京: 中国标准出版社, 2007.

    National Standardization Management Committee. Marine Survey Specification[M]. Beijing: China Standard Press, 2007.
    [14] Garzanti E, Andò S, Giovanni Vezzoli. Grain-size dependence of sediment composition and environ-mental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 422−432.
    [15] Krippner A, Meinhold G, Morton A C, et al. Grain-size dependence of garnet composition revealed by provenance signatures of modern stream sediments from the western Hohe Tauern (Austria)[J]. Sedimentary Geology, 2015, 321: 25−38. doi: 10.1016/j.sedgeo.2015.03.002
    [16] 刘秀明, 罗祎. 粒度分析在沉积物研究中的应用[J]. 实验技术与管理, 2013, 30(8): 20−23. doi: 10.3969/j.issn.1002-4956.2013.08.007

    Liu Xiuming, Luo Wei. Application of grain size analysis in sediments research[J]. Experimental Technology and Management, 2013, 30(8): 20−23. doi: 10.3969/j.issn.1002-4956.2013.08.007
    [17] 刘善品, 何况, 吴小斌, 等. 细粒沉积物(岩)中重矿物提取方法的改进[J]. 地质科技情报, 2012, 31(1): 131−136. doi: 10.3969/j.issn.1000-7849.2012.01.022

    Liu Shanpin, He Kuang, Wu Xiaobin, et al. Improving the methods of heavy minerals pretreatment and minerals separation in mudstone and siltstone[J]. Geological science and technology information, 2012, 31(1): 131−136. doi: 10.3969/j.issn.1000-7849.2012.01.022
    [18] 周正. 单矿物分选学[M]. 广州: 广东科技出版社, 1997: 161-178.

    Zhou Zheng. Single Mineral Sorting[M]. Guangzhou: Guangdong Science and Technology Press, 1997: 161-178.
    [19] 任迎新, 朱宝华. 重砂矿物分选及鉴定[M]. 北京: 中国地质大学出版社, 1987.

    Ren Yingxin, Zhu Baohua. Classification and Identification of Heavy Sand Mineral[M]. Beijing: China University of Geosciences Press, 1987.
    [20] Mange M A, Maurerg H F W. Heavy Minerals in Colour[M]. London: Chapman & Hall, 1992: 11-16.
    [21] Son Y S, Baek J S. A modified correlation coefficient based similarity measure for clustering time-course gene expression data[J]. Pattern Recognition Letters, 2008, 29(3): 232−242. doi: 10.1016/j.patrec.2007.09.015
    [22] Anderberg M. Cluster Analysis for Application[M]. New York: Academic Press, 1973.
    [23] 徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2011.

    Xu Jianhuan. Mathematical Methods in Modern Geography[M]. Beijing: Higher Education Press, 2011.
    [24] 刘红, 何青, 王元叶, 等. 长江口表层沉积物粒度时空分布特征[J]. 沉积学报, 2007(3): 445−455. doi: 10.3969/j.issn.1000-0550.2007.03.017

    Liu Hong, He Qing, Wang Yuanye, et al. Emporaland spatial characteristics of surface sediment grain-size distribution in Changjiang Estuary[J]. Geographical Research, 2007(3): 445−455. doi: 10.3969/j.issn.1000-0550.2007.03.017
    [25] 邓程文, 张霞, 林春明, 等. 长江河口区末次冰期以来沉积物的粒度特征及水动力条件[J]. 海洋地质与第四纪地质, 2016, 36(6): 185−198.

    Deng Chengwen, Zhang Xia, Lin Chunming, et al. Grain-size charactereristics and hydrodynamic conditions of the Changjiang estuarine deposits since last glacial[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 185−198.
    [26] 金秉福. 粒度分析中偏度系数的影响因素及其意义[J]. 海洋科学, 2012, 36(2): 129−135.

    Jin Bingfu. Influencing factors and significance of the skewness coefficient in grain size analysis[J]. Marine Sciences, 2012, 36(2): 129−135.
    [27] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980.

    Liu Baojun. Sedimentary Petrology[M]. Beijng: Geological Press, 1980.
    [28] 战庆, 王张华, 王昕, 等. 长江口区晚新生代沉积物粒度特征和沉积地貌环境演变[J]. 沉积学报, 2009, 27(4): 674−683.

    Zhan Qing, Wang Zhanghua, Wang Xin, et al. Grain-size characteristics and geomorphology evolution in Late Cenozoic Era sediments Changjiang Estuary[J]. Geographical Research, 2009, 27(4): 674−683.
    [29] Morton A C, Hall C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/4): 3−29.
    [30] 赵红格, 刘池洋. 物源分析方法和研究进展[J]. 沉积学报, 2003, 21(3): 409−415. doi: 10.3969/j.issn.1000-0550.2003.03.007

    Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409−415. doi: 10.3969/j.issn.1000-0550.2003.03.007
    [31] 王中波, 杨守业, 李萍, 等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报, 2006(4): 570−578. doi: 10.3969/j.issn.1000-0550.2006.04.015

    Wang Zhongbo, Yang Shouye, Li Ping, et al. Detrital mineral compositions of the Changjiang River sedmients and their tracing implications[J]. Acta Sedimentologica Sinica, 2006(4): 570−578. doi: 10.3969/j.issn.1000-0550.2006.04.015
    [32] Vezzoli G, Garzanti E. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology, 2016, 15(261): 177−192.
    [33] 金秉福, 岳伟, 王昆山. 黄河沉积中角闪石矿物晶体化学特征和成因分析[J]. 海洋学报, 2013, 35(1): 131−143. doi: 10.3969/j.issn.0253-4193.2013.01.015

    Jin Bingfu, Yue Wei, Wang Kunshan. The crystaliochemistry characteristics and genetic analysis of amphibiole in the sediments of the Huanghe River[J]. Haiyang Xuebao, 2013, 35(1): 131−143. doi: 10.3969/j.issn.0253-4193.2013.01.015
    [34] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    Wu Yuanbao, Zhen Yongfei. Study on the mineralogy of zircon and its constraints on the interpretation of U-Pb age[J]. Periodical of Ocean University of China, 2004(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    [35] 陈丽蓉. 渤海、黄海、东海沉积物中矿物组合的研究[J]. 海洋科学, 1989(2): 1−8.

    Chen Lirong. Study on mineral combinations in sediments of Bohai Sea, Yellow Sea and East Sea, China[J]. Marine Science, 1989(2): 1−8.
    [36] 金秉福, 张云吉, 宋键. 长江三角洲第一硬土层中微结核的矿物化学特征及其成因[J]. 海洋地质与第四纪地质, 2007(3): 9−15.

    Jin Bingfu, Zhang Yunji, Song Jian. Characteristics of mineral chemistry and formation of the micro-nodules in the first stiff clay layer in the Yangtze River Delta[J]. Marine Geology and Quaternary Geology, 2007(3): 9−15.
    [37] 邓兵, 吴国瑄, 李从先. 长江三角洲地区第一古土壤层及其古气候记录[J]. 海洋地质与第四纪地质, 1999, 19(3): 29−37.

    Deng Bin, Wu Guoxuan, Li Congxian. Paleoclimate recorded in the first layer of paleosol in Yangtze Delta area[J]. Marine Geology and Quaternary Geology, 1999, 19(3): 29−37.
    [38] Yang Shouye, Li Congxian. Elemental composition in the sediments of the Yangtze and the Yellow River and their tracing implication[J]. Progress in Natural Science, 2000, 10(8): 612−618.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  92
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2018-12-28
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回