留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中全新世以来南黄海中部沉积过程

皮仲 李铁刚 类彦立

皮仲,李铁刚,类彦立. 中全新世以来南黄海中部沉积过程——基于岩心粒度和有机质指标[J]. 海洋学报,2019,41(11):75–88,doi:10.3969/j.issn.0253−4193.2019.11.008
引用本文: 皮仲,李铁刚,类彦立. 中全新世以来南黄海中部沉积过程——基于岩心粒度和有机质指标[J]. 海洋学报,2019,41(11):75–88,doi:10.3969/j.issn.0253−4193.2019.11.008
Pi Zhong,Li Tiegang,Lei Yanli. Sedimentary processes of central South Yellow Sea since the mid-Holocene based on grain size and organic matter indexes[J]. Haiyang Xuebao,2019, 41(11):75–88,doi:10.3969/j.issn.0253−4193.2019.11.008
Citation: Pi Zhong,Li Tiegang,Lei Yanli. Sedimentary processes of central South Yellow Sea since the mid-Holocene based on grain size and organic matter indexes[J]. Haiyang Xuebao,2019, 41(11):75–88,doi:10.3969/j.issn.0253−4193.2019.11.008

中全新世以来南黄海中部沉积过程基于岩心粒度和有机质指标

doi: 10.3969/j.issn.0253-4193.2019.11.008
基金项目: 国家自然科学基金(41476043,41976058,41830539);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ13)。
详细信息
    作者简介:

    皮仲(1990—),女,湖南省沅江市人,从事海洋地质与古海洋研究

    通讯作者:

    李铁刚,男,研究员,主要从事海洋地质与古海洋学研究。E-mail:tgli@fio.org.cn

    类彦立,女,研究员,主要从事有孔虫多样性与全球变化研究。E-mail:leiyanli@qdio.ac.cn

  • 中图分类号: P736.22

Sedimentary processes of central South Yellow Sea since the mid-Holocene based on grain size and organic matter indexes

  • 摘要: 海陆交互作用下的南黄海沉积环境复杂,其沉积机制一直是古海洋研究的重点和难点。本文以取自南黄海中部泥质区的Z1岩心为载体,对196个样品的粒度和整体有机质指标(TOC、TN、TOC/TN和δ13Corg)进行了详细分析,并对5个层位进行AMS14C年龄测定,分辨率高达11 a/cm。研究结果显示,6.1 ka BP以来南黄海中部沉积过程可分为3个阶段:(1) 6.1~5.2 ka BP,沉积物粒度较粗,以残留砂和陆源粗粒物质为主,有机质含量较低且主要为陆源输入,本阶段多受东亚季风强盛的影响,动荡海洋环境下有机质保存效率低,大量陆源输入冲淡作用显著;(2) 5.2~3.9 ka BP,沉积物粒度变细且波动较大,有机质呈增加趋势且以海源为主,主要受东亚冬季风减弱的影响,海源有机质含量增加,与黄海暖流影响增强有关;(3) 3.9~0 ka BP,沉积物粒度最细且相对稳定,有机质含量继续增加,直至1.9 ka BP趋于稳定,主要受现代环流系统和东亚冬季风影响。结果表明,南黄海粒度和整体有机质指标变化过程复杂,显示中全新世以来南黄海中部泥质区沉积环境演化的复杂性。本研究获得了南黄海高分辨率的沉积环境演化记录,不仅为沉积机制研究提供更多数据支撑,还可为区域古气候和古海洋演化提供关键的指示证据。
  • 图  1  岩心Z1的位置和现代冬季黄海表层环流(修改自文献[32])

    Fig.  1  Location of Core Z1 and the modern winter surface currents in the Yellow Sea (modified from reference [32])

    图  2  Z1岩心的年龄框架和岩相学

    Fig.  2  Lithology and age model of Core Z1

    图  3  Z1岩心TOC含量、TN含量、TOC/TN、δ13Corg、粒度以及沉积速率的变化

    黑线为TOC含量、TN含量、δ13Corg和粒度的3点平滑曲线以及TOC/TN的5点平滑曲线

    Fig.  3  The variation of total carbon (TOC), total nitrogen (TN), ratio of TOC and TN, organic carbon isotopic composition (δ13Corg), mean grain size, and sediment rate in Core Z1

    Three points moving average lines of TOC, TN, δ13Corg and mean grain size, and five points moving average line of TOC/TN

    图  4  6.1 ka BP以来Z1岩心沉积环境变化与东亚季风的关系

    a.太阳总辐照度[43];b.北大西洋浮冰[44];c.H07重建的南黄海东亚季风记录[42];d.Dongge石笋DA的δ18O时间序列[45];e.δ13Corg含量;f.C/N;g.TOC含量;h.平均粒径;i.沉积速率;虚线表示分为4个阶段

    Fig.  4  The relationship of the sediment environment evolution with East Asian Monsoon revealed by Core Z1 during 6.1-0 ka BP

    a. Total solar irradiance[43]; b. Holocene record of drift ice in the North Atlantic[44]; c. reconstruction of East Asian Winter Monsoon from H07 of South Yellow Sea[42]; d. δ18O time series of the Dongge Cave stalagmite DA[45]; e. δ13Corg; f. TOC/TN; g. TOC; h. mean grain size; i. sediment rate. The dotted lines indicate four phases

    图  5  Z1岩心沉积物中TOC和TN的相关关系

    Fig.  5  Correlation of TOC and TN contents in the sediments of Core Z1

    表  1  南黄海中部泥质区Z1岩心AMS14C测年数据

    Tab.  1  AMS14C data of Core Z1 in the central mud area of South Yellow Sea

    层位
    /cm
    材料AMS14C年龄
    /a BP
    误差
    /a
    1σ校正年龄中值
    /cal a BP
    29~30有孔虫+贝壳2 120±301 867±66
    81~82有孔虫+贝壳2 910±302 825±66
    120贝壳3 920±304 091±66
    160碳屑+纤维素5 160±305 664±66
    196碳屑+纤维素5 550±306 094±66
    下载: 导出CSV
  • [1] Liu J, Saito Y, Kong X H, et al. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea[J]. Continental Shelf Research, 2009, 29(7): 846−855. doi: 10.1016/j.csr.2009.01.002
    [2] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1/4): 45−67.
    [3] Liu S F, Shi X F, Fang X S, et al. Spatial and temporal distributions of clay minerals in mud deposits on the inner shelf of the East China Sea: implications for paleoenvironmental changes in the Holocene[J]. Quaternary International, 2014, 349: 270−279. doi: 10.1016/j.quaint.2014.07.016
    [4] Xing L, Jiang Y Q, Yuan Z N, et al. Holocene temperature records from the East China Sea mud area southwest of the Cheju Island reconstructed by the U37K′ and TEX86 paleothermometers[J]. Journal of Ocean University of China, 2013, 12(4): 599−604. doi: 10.1007/s11802-013-2202-0
    [5] Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation: evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3/4): 378−393.
    [6] Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 237−249. doi: 10.1007/s00343-009-9149-4
    [7] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236(3/4): 165−187.
    [8] Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years[J]. Marine Geology, 1999, 156(1/4): 285−304.
    [9] Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305−319. doi: 10.1016/S0012-821X(00)00321-6
    [10] Kim J M, Kucera M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15, 000 years[J]. Quaternary Science Reviews, 2000, 19(11): 1067−1085. doi: 10.1016/S0277-3791(99)00086-4
    [11] 刘健, 李绍全, 王圣杰, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1): 13−24.

    Liu Jian, Li Shaoquan, Wang Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea warm current since the last deglaciation[J]. Marine Geology & Quaternary Geology, 1999, 19(1): 13−24.
    [12] Xiang R, Yang Z S, Saito Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology, 2008, 67(1/2): 104−119.
    [13] 王利波, 杨作升, 赵晓辉, 等. 南黄海中部泥质区YE-2孔8.4 kaBP来的沉积特征[J]. 海洋地质与第四纪地质, 2009, 29(5): 1−11.

    Wang Libo, Yang Zuosheng, Zhao Xiaohui, et al. Sedimentary characteristics of core YE-2 from the central mud area in the south Yellow Sea during last 8, 400 years and its interspace coarse layers[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 1−11.
    [14] 王勇智, 乔璐璐, 杨作升, 等. 夏、冬季山东半岛东北部沿岸悬浮物输送机制的初步研究[J]. 泥沙研究, 2012(5): 49−57. doi: 10.3969/j.issn.0468-155X.2012.05.008

    Wang Yongzhi, Qiao Lulu, Yang Zuosheng, et al. Research on suspended sediment transport mechanisms along northeast coast of Shandong Peninsula in summer and in winter[J]. Journal of Sediment Research, 2012(5): 49−57. doi: 10.3969/j.issn.0468-155X.2012.05.008
    [15] Shi X F, Shen S X, Yi H I, et al. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48(S1): 1−7. doi: 10.1007/BF02900933
    [16] Wang Y H, Li G X, Zhang W G, et al. Sedimentary environment and formation mechanism of the mud deposit in the central South Yellow Sea during the past 40 kyr[J]. Marine Geology, 2014, 347: 123−135. doi: 10.1016/j.margeo.2013.11.008
    [17] Zhou C Y, Dong P, Li G X. Hydrodynamic processes and their impacts on the mud deposit in the southern Yellow Sea[J]. Marine Geology, 2015, 360: 1−16. doi: 10.1016/j.margeo.2014.11.012
    [18] Lim D, Xu Z K, Choi J, et al. Holocene changes in detrital sediment supply to the eastern part of the central Yellow Sea and their forcing mechanisms[J]. Journal of Asian Earth Sciences, 2015, 105: 18−31. doi: 10.1016/j.jseaes.2015.03.032
    [19] Liu Z F, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years[J]. Marine Geology, 2003, 201(1/3): 133−146.
    [20] Xiang R, Yang Z S, Saito Y, et al. East Asia Winter Monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS[J]. Science in China: Series D, 2006, 49(6): 604−614. doi: 10.1007/s11430-006-0604-1
    [21] Steinke S, Glatz C, Mohtadi M, et al. Past dynamics of the East Asian Monsoon: no inverse behaviour between the summer and winter monsoon during the Holocene[J]. Global and Planetary Change, 2011, 78(3/4): 170−177.
    [22] Zhou B T, Zhao P. Inverse correlation between ancient winter and summer monsoons in East Asia?[J]. Chinese Science Bulletin, 2009, 54(20): 3760−3767. doi: 10.1007/s11434-009-0583-7
    [23] Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52−63. doi: 10.1016/j.margeo.2012.10.008
    [24] Yu F L, Zong Y Q, Lloyd J M, et al. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China[J]. The Holocene, 2012, 22(6): 705−715. doi: 10.1177/0959683611417740
    [25] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
    [26] 蔡德陵, 孙耀, 张小勇, 等. 由东海、黄海沉积物中有机碳含量及稳定同位素组成重建200 a以来初级生产力历史记录[J]. 海洋学报, 2014, 36(2): 40−50. doi: 10.3969/j.issn.0253-4193.2014.02.005

    Cai Deling, Sun Yao, Zhang Xiaoyong, et al. Reconstructing a primary productivity history over the past 200 a using the sediment organic carbon content and the stable isotope composition from the East China Sea and the Yellow Sea[J]. Haiyang Xuebao, 2014, 36(2): 40−50. doi: 10.3969/j.issn.0253-4193.2014.02.005
    [27] Xing L, Tao S Q, Zhang H L, et al. Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea[J]. Applied Geochemistry, 2011, 26(8): 1584−1593. doi: 10.1016/j.apgeochem.2011.06.024
    [28] Wu P, Xiao X T, Tao S Q, et al. Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene[J]. Science China: Earth Sciences, 2016, 59(6): 1216−1224. doi: 10.1007/s11430-016-5283-y
    [29] Xing L, Zhao M X, Zhang H L, et al. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 1−11. doi: 10.1007/s00343-012-1045-7
    [30] Xing L, Zhao M X, Gao W X, et al. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry, 2014, 76: 72−81. doi: 10.1016/j.orggeochem.2014.07.005
    [31] 赵美训, 张玉琢, 邢磊, 等. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J]. 中国海洋大学学报, 2011, 41(4): 90−96.

    Zhao Meixun, Zhang Yuzhuo, Xing Lei, et al. The composition and distribution of n-alkanes in surface sediments from the South Yellow Sea and their potential as organic matter source indicators[J]. Periodical of Ocean University of China, 2011, 41(4): 90−96.
    [32] Zhao X C, Tao S Q, Zhang R P, et al. Biomarker records of phytoplankton productivity and community structure changes in the Central Yellow Sea mud area during the Mid-late Holocene[J]. Journal of Ocean University of China, 2013, 12(4): 639−646. doi: 10.1007/s11802-013-2271-0
    [33] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63-85.
    [34] Kim J M, Kennett J P. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae)[J]. Marine Micropaleontology, 1998, 34(1/2): 71−89.
    [35] Kong G S, Park S C, Han H C, et al. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea[J]. Quaternary International, 2006, 144(1): 38−52. doi: 10.1016/j.quaint.2005.05.011
    [36] Ge H M, Zhang C L, Li J, et al. Tetraether lipids from the southern Yellow Sea of China: implications for the variability of East Asia Winter Monsoon in the Holocene[J]. Organic Geochemistry, 2014, 70: 10−19. doi: 10.1016/j.orggeochem.2014.02.011
    [37] Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10): 1656−1668. doi: 10.1007/s11430-012-4447-7
    [38] 卢健, 李安春. 南黄海表层沉积物粒度特征季节变化及其影响因素[J]. 海洋科学, 2015, 39(3): 48−58. doi: 10.11759/hykx20140527001

    Lu Jian, Li Anchun. Seasonal variations and influencing factors of the grain size characteristics of surface sediments in the South Yellow Sea[J]. Marine Science, 2015, 39(3): 48−58. doi: 10.11759/hykx20140527001
    [39] 张晓东, 季阳, 杨作升, 等. 南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J]. 中国科学: 地球科学, 2016, 59(2): 258−267.

    Zhang Xiaodong, Ji Yang, Yang Zuosheng, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China: Earth Sciences, 2016, 59(2): 258−267.
    [40] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81−90.

    Yang Zuosheng, Guo Zhigang, Wang Zhaoxiang, et al. Macroscopic pattern of suspended mass transported from Yellow Sea-East China Sea to the eastern deep seas[J]. Haiyang Xuebao, 1992, 14(2): 81−90.
    [41] Xia D S, Jia J, Li G H, et al. Out-of-phase evolution between summer and winter East Asian monsoons during the Holocene as recorded by Chinese loess deposits[J]. Quaternary Research, 2014, 81(3): 500−507. doi: 10.1016/j.yqres.2013.11.002
    [42] 冷传旭, 袁鸿洁, 徐翠玲, 等. 对数比变换在因子分析法提取东亚冬季风敏感粒级中的应用——以南黄海中部泥质区H07孔为例[J]. 海洋地质与第四纪地质, 2017, 37(1): 151−161.

    Leng Chuanxu, Yuan Hongjie, Xu Cuiling, et al. Applications of logarithm ratio transformation to extraction of the sensitive grain size of East Asian Winter Monsoon by the method of factor analysis: a case study of core H07 from the central mud area of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 151−161.
    [43] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19): L19704. doi: 10.1029/2009GL040142
    [44] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257−1266. doi: 10.1126/science.278.5341.1257
    [45] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854−857. doi: 10.1126/science.1106296
    [46] 皮仲, 李铁刚, 南青云. 中全新世以来南黄海岩心记录的沉积环境演变对东亚季风的响应[J]. 海洋地质前沿, 2016, 37(7): 1−10.

    Pi Zhong, Li Tiegang, Nan Qingyun. Environmental changes since mid Holocene revealed by core Z1 in the South Yellow Sea and their response to East Asian Monsoon[J]. Marine Geology Frontiers, 2016, 37(7): 1−10.
    [47] Zhu Y, Chang R. Preliminary study of the dynamic origin of the distribution pattern of bottom sediments on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2000, 51(5): 663−680. doi: 10.1006/ecss.2000.0696
    [48] Shi X F, Chen C F, Liu Y G, et al. Trend analysis of sediment grain size and sedimentary process in the central South Yellow Sea[J]. Chinese Science Bulletin, 2002, 47(14): 1202−1207.
    [49] Hu D X. Upwelling and sedimentation dynamics I. The role of upwelling in sedimentation in the Huanghai Sea and East China Sea—A description of general features[J]. Chinese Journal of Oceanology & Limnology, 1984, 2(1): 12−19.
    [50] 申顺喜, 李安春, 袁巍. 南黄海中部的低能沉积环境[J]. 海洋与湖沼, 1996, 27(5): 518−523. doi: 10.3321/j.issn:0029-814X.1996.05.011

    Shen Shunxi, Li Anchun, Yuan Wei. Low energy environment of the central South Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1996, 27(5): 518−523. doi: 10.3321/j.issn:0029-814X.1996.05.011
    [51] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297−317. doi: 10.1016/0277-3791(91)90033-Q
    [52] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93−120.
    [53] Zhang F, Li C L, Sun S, et al. Distribution patterns of chlorophyll a in spring and autumn in association with hydrological features in the southern Yellow Sea and northern East China Sea[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 784−792. doi: 10.1007/s00343-009-9182-3
    [54] 吕晓霞, 宋金明, 袁华茂, 等. 南黄海表层不同粒级沉积物中氮的地球化学特征[J]. 海洋学报, 2005, 27(1): 64−69. doi: 10.3321/j.issn:0253-4193.2005.01.009

    Lv Xiaoxia, Song Jinming, Yuan Huamao, et al. Geochemical characteristics of nitrogen in different grain size sediment from the southern Huanghai Sea[J]. Haiyang Xuebao, 2005, 27(1): 64−69. doi: 10.3321/j.issn:0253-4193.2005.01.009
    [55] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian Monsoon[J]. Nature, 2007, 445(7123): 74−77. doi: 10.1038/nature05431
    [56] 肖尚斌, 李安春, 陈木宏, 等. 近8 ka东亚冬季风变化的东海内陆架泥质沉积记录[J]. 地球科学: 中国地质大学学报, 2005, 30(5): 573−581.

    Xiao Shangbin, Li Anchun, Chen Muhong, et al. Recent 8 ka mud records of the East Asian Winter Monsoon from the inner shelf of the East China Sea[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(5): 573−581.
    [57] Bashkin V N, Park S U, Choi M S, et al. Nitrogen budgets for the Republic of Korea and the Yellow Sea region[J]. Biogeochemistry, 2002, 57(1): 387−403. doi: 10.1023/A:1015767506197
    [58] Zhang G S, Zhang J, Liu S M. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea[J]. Journal of Atmospheric Chemistry, 2007, 57(1): 41−57. doi: 10.1007/s10874-007-9060-3
    [59] 邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报, 2009, 39(2): 317−322.

    Xing Lei, Zhao Meixun, Zhang Hailong, et al. Biomarker records of phytoplankton community structure changes in the Yellow Sea over the last 200 years[J]. Periodical of Ocean University of China, 2009, 39(2): 317−322.
    [60] 韦钦胜, 王保栋. 南黄海冷水团海域及西部近岸区表层沉积物中碳、氮、磷的分布特征及其生态学指示意义[J]. 环境科学学报, 2012, 32(7): 1697−1707.

    Wei Qinsheng, Wang Baodong. Distributions of carbon, nitrogen and phosphorus in the surface sediments and their ecological implications in the areas of Cold Water Mass and off the western coast of the Southern Yellow Sea[J]. Acta Scientiae Circumstantiae, 2012, 32(7): 1697−1707.
    [61] Stuiver M, Grootes P M, Braziunas T F. The GISP2δ18O climate record of the past 16, 500 years and the role of the sun, ocean, and volcanoes[J]. Quaternary Research, 1995, 44(3): 341−354. doi: 10.1006/qres.1995.1079
    [62] Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533): 1304−1308. doi: 10.1126/science.1059725
    [63] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学: B辑, 1992, 22(12): 1300−1308.

    Shi Yafeng, Kong Zhaochen, Wang Sumin, et al. Climate fluctuation and significant events during Megathermal epoch in Holocene in China[J]. Science in China: Series B, 1992, 22(12): 1300−1308.
    [64] Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276(5320): 1821−1825. doi: 10.1126/science.276.5320.1821
    [65] 施雅风, 姚檀栋, 杨保. 近2000a古里雅冰芯10a尺度的气候变化及其与中国东部文献记录的比较[J]. 中国科学: D辑, 1999, 29(S1): 79−86.

    Shi Yafeng, Yao Tandong, Yang Bao. Climate change at 10a scale of Guliya Ice Core in recent 2000a and its comparison with document records in Eastern China[J]. Science in China: Series D, 1999, 29(S1): 79−86.
    [66] 徐海, 洪业汤, 林庆华, 等. 红原泥炭纤维素氧同位素指示的距今6 ka温度变化[J]. 科学通报, 2002, 47(15): 1181−1186. doi: 10.3321/j.issn:0023-074X.2002.15.014

    Xu Hai, Hong Yetang, Lin Qinghua, et al. The temperature change of 6 ka from the oxygen isotope of Hongyuan peat cellulose[J]. Chinese Science Bulletin, 2002, 47(15): 1181−1186. doi: 10.3321/j.issn:0023-074X.2002.15.014
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  46
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-11
  • 修回日期:  2018-11-15
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回