留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海大型底栖生物多样性研究进展及中国现状

李新正 董栋 寇琦 杨梅 龚琳 隋吉星

李新正,董栋,寇琦,等. 深海大型底栖生物多样性研究进展及中国现状[J]. 海洋学报,2019,41(10):169–181,doi:10.3969/j.issn.0253−4193.2019.10.011
引用本文: 李新正,董栋,寇琦,等. 深海大型底栖生物多样性研究进展及中国现状[J]. 海洋学报,2019,41(10):169–181,doi:10.3969/j.issn.0253−4193. 2019.10.011
Li Xinzheng,Dong Dong,Kou Qi, et al. Advances in research on deep-sea macrobenthic biodiversity with the progress in China[J]. Haiyang Xuebao,2019, 41(10):169–181,doi:10.3969/j.issn.0253−4193.2019.10.011
Citation: Li Xinzheng,Dong Dong,Kou Qi, et al. Advances in research on deep-sea macrobenthic biodiversity with the progress in China[J]. Haiyang Xuebao,2019, 41(10):169–181,doi:10.3969/j.issn.0253−4193. 2019.10.011

深海大型底栖生物多样性研究进展及中国现状

doi: 10.3969/j.issn.0253-4193.2019.10.011
基金项目: 中国科学院科技先导专项(XDB06010101,XDA11030201,XDA11020303);“科学”号高端用户项目(KEXUE2018G25,KEXUE2018G22);国家重点研发计划(2018YFC0310800,2018YFC0309804); 国家自然科学基金面上项目(31572229,41706188); 中国大洋矿产资源研究开发协会项目(DY135-E2-1-02)。
详细信息
    作者简介:

    李新正(1963—),山东省潍坊市人,研究员,主要从事海洋生物学与海洋生态学研究。E-mail:lixzh@qdio.ac.cn

  • 中图分类号: Q178.53

Advances in research on deep-sea macrobenthic biodiversity with the progress in China

  • 摘要: 综述了国内外深海大型底栖生物多样性、生态学领域的研究进展情况,重点论述了中国在深海热液、冷泉、海山、深渊及鲸尸等特殊环境的考察、研究进展情况,并对中国将来的研究趋势和发展方向做了梳理和展望。
  • [1] Fujikura K, Lindsay D, Kitazato H, et al. Marine biodiversity in Japanese waters[J]. PLoS One, 2010, 5(8): e11836. doi: 10.1371/journal.pone.0011836
    [2] Li Xinzheng. Taxonomic research on deep-sea macrofauna in the South China Sea using the Chinese deep-sea submersible Jiaolong[J]. Integrative Zoology, 2017, 12(4): 270−282. doi: 10.1111/1749-4877.12254
    [3] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4677): 965−967. doi: 10.1126/science.226.4677.965
    [4] Kennicutt M C, Brooks J M, Bidigare R R, et al. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope[J]. Nature, 1985, 317(6035): 351−353. doi: 10.1038/317351a0
    [5] Corselli C, Basso D. First evidence of benthic communities based on chemosynthesis on the Napoli mud volcano (eastern Mediterranean)[J]. Marine Geology, 1996, 132(1/4): 227−239.
    [6] Danovaro R, Company J B, Corinaldesi C, et al. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable[J]. PLoS One, 2010, 5(8): e11832. doi: 10.1371/journal.pone.0011832
    [7] Sellanes J, Quiroga E, Neira C. Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile, ~36°S[J]. ICES Journal of Marine Science, 2008, 65(7): 1102−1111. doi: 10.1093/icesjms/fsn099
    [8] Domack E, Duran D, Leventer A, et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch[J]. Nature, 2005, 436(7051): 681−685. doi: 10.1038/nature03908
    [9] Fujikura K, Kojima S, Tamaki K, et al. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7 326 m deep, in the Japan Trench[J]. Marine Ecology Progress Series, 1999, 190: 17−26. doi: 10.3354/meps190017
    [10] Suess E. RV Sonne cruise report SO 177: SiGer 2004; Sino-German Cooperative Project; South China Sea Continental Margin: Geological Methane Budget and Environmental Effects of Methane Emissions and Gashydrates[Z]. Bremerhaven, PANGAEA: RV Sonne Cruise SO 177, 2005.
    [11] Zhang Yong, Su Xin, Chen Fang, et al. Microbial diversity in cold seep sediments from the northern South China Sea[J]. Geoscience Frontiers, 2012, 3(3): 301−316. doi: 10.1016/j.gsf.2011.11.014
    [12] Li Xinzheng. Report on two deep-water caridean shrimp species (Crustacea: Decapoda: Caridea: Alvinocarididae, Acanthephyridae) from the northeastern South China Sea[J]. Zootaxa, 2015, 3911(1): 130−138. doi: 10.11646/zootaxa.3911.1.8
    [13] Dong Dong, Li Xinzheng. Galatheid and Chirostylid crustaceans (Decapoda: Anomura) from a cold seep environment in the northeastern South China Sea[J]. Zootaxa, 2015, 4057(1): 91−105. doi: 10.11646/zootaxa.4057.1.5
    [14] Gong Lin, Li Xinzheng, Qiu Jianwen. Two new species of Hexactinellida (Porifera) from the South China Sea[J]. Zootaxa, 2015, 4034(1): 182−192. doi: 10.11646/zootaxa.4034.1.9
    [15] Sui Jixing, Li Xinzheng. A new species and new record of deep-sea scale-worms (Polynoidae: Polychaeta) from the Okinawa Trough and the South China Sea[J]. Zootaxa, 2017, 4238(4): 562−570. doi: 10.11646/zootaxa.4238.4.4
    [16] Lin C W, Tsuchida S, Lin S, et al. Munidopsis lauensis Baba & de Saint Laurent, 1992 (Decapoda, Anomura, Munidopsidae), a newly recorded squat lobster from a cold seep in Taiwan[J]. Zootaxa, 2013, 3737(1): 92−96. doi: 10.11646/zootaxa.3737.1.8
    [17] Wang T W, Ahyong S T, Chan T Y. First records of Lithodes longispina Sakai, 1971 (Crustacea: Decapoda: Anomura: Lithodidae) from southwestern Taiwan, including a site in the vicinity of a cold seep[J]. Zootaxa, 2016, 4066(2): 173−176. doi: 10.11646/zootaxa.4066.2.6
    [18] Chan T Y, Komai T. A new shrimp species of the genus Lebbeus White, 1847 (Crustacea: Deacpoda: Caridea: Thoridae) from a deep-sea cold seep site off southwestern Taiwan[J]. Zootaxa, 2017, 4238(3): 426−432. doi: 10.11646/zootaxa.4238.3.9
    [19] Xu Ting, Feng Dong, Tao Jun, et al. A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas) from the South China Sea: Morphology, phylogenetic position, and gill-associated microbes[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2019, 146: 79−90. doi: 10.1016/j.dsr.2019.03.001
    [20] Chen Chong, Okutani T, Liang Qianyong, et al. A noteworthy new species of the family Vesicomyidae from the South China Sea (Bivalvia: Glossoidea)[J]. Venus, 2018, 76(1/4): 29−37.
    [21] Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 1998, 45(1/3): 517−567.
    [22] Tunnicliffe V, McArthur A G, McHugh D. A biogeographical perspective of the deep-sea hydrothermal vent fauna[J]. Advances in Marine Biology, 1998, 34: 353−442. doi: 10.1016/S0065-2881(08)60213-8
    [23] Tunnicliffe V, Juniper S K, Sibuet M. Reducing environments of the deep-sea floor[M]//Tyler P A. Ecosystems of the World, Vol. 28, Ecosystems of the Deep-Sea. Amsterdam: Elsevier, 2003: 81–110.
    [24] Watanabe H, Fujikura K, Kojima S, et al. Japan: vents and seeps in close proximity[M]//Kiel S. The Vent and Seep Biota. Topics in Geobiology, Vol. 33. Dordrecht: Springer, 2010: 379–401.
    [25] Vanreusel A, Fonseca G, Danovaro R, et al. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity[J]. Marine Ecology, 2010, 31(1): 6−20. doi: 10.1111/j.1439-0485.2009.00352.x
    [26] Bernardino A F, Levin L A, Thurber A R, et al. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls[J]. PLoS One, 2012, 7(4): e33515. doi: 10.1371/journal.pone.0033515
    [27] Oliver G, Rodrigues C F, Cunha M R. Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae[J]. Zookeys, 2011, 113: 1−38. doi: 10.3897/zookeys.113.1402
    [28] Olu-Le Roy K, von Cosel R, Hourdez S, et al. Amphi-Atlantic cold-seep Bathymodiolus species complexes across the equatorial belt[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(11): 1890−1911. doi: 10.1016/j.dsr.2007.07.004
    [29] Tyler P A, German C R, Ramirez-Llodra E, et al. Understanding the biogeography of chemosynthetic ecosystems[J]. Oceanologica Acta, 2002, 25(5): 227−241. doi: 10.1016/S0399-1784(02)01202-1
    [30] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep Sea Research, 1977, 24(9): 857−863. doi: 10.1016/0146-6291(77)90478-7
    [31] Beaulieu S E, Baker E T, German C R, et al. An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4892−4905. doi: 10.1002/2013GC004998
    [32] Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6: 805−814. doi: 10.1038/nrmicro1991
    [33] Felbeck H, Somero G N. Primary production in deep-sea hydrothermal vent organisms: Roles of sulfide-oxidizing bacteria[J]. Trends in Biochemical Sciences, 1982, 7(6): 201−204. doi: 10.1016/0968-0004(82)90088-3
    [34] Childress J J, Fisher C R. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses[J]. Oceanography and Marine Biology, 1992, 30: 337−441.
    [35] 王春生, 杨俊毅, 张东声, 等. 深海热液生物群落研究综述[J]. 厦门大学学报:自然科学版, 2006, 45(S2): 141−149.

    Wang Chunsheng, Yang Junyi, Zhang Dongsheng, et al. A review on deep-sea hydrothermal vent communities[J]. Journal of Xiamen University: Natural Science, 2006, 45(S2): 141−149.
    [36] Tunnicliffe V. Hydrothermal vents: a global system[J]. JAMSTEC Journal of Deep Sea Research, 1997, Special Volume: 105–114.
    [37] van Dover C L, German C R, Speer K G, et al. Evolution and biogeography of deep-sea vent and seep invertebrates[J]. Science, 2002, 295(5558): 1253−1257. doi: 10.1126/science.1067361
    [38] Bachraty C, Legendre P, Desbruyères D. Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(8): 1371−1378. doi: 10.1016/j.dsr.2009.01.009
    [39] Vrijenhoek R C. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations[J]. Molecular Ecology, 2010, 19(20): 4391−4411. doi: 10.1111/j.1365-294X.2010.04789.x
    [40] Tunnicliffe V, Fowler C M R. Influence of sea-floor spreading on the global hydrothermal vent fauna[J]. Nature, 1996, 379(6565): 531−533. doi: 10.1038/379531a0
    [41] 黄丁勇, 林荣澄, 牛文涛, 等. 西南印度洋深海热液区铠甲虾初探[J]. 海洋通报, 2011, 30(1): 88−93. doi: 10.3969/j.issn.1001-6392.2011.01.014

    Huang Dingyong, Lin Rongcheng, Niu Wentao, et al. Preliminary study on squat lobsters from the hydrothermal areas in southwest Indian Ocean[J]. Marine Science Bulletin, 2011, 30(1): 88−93. doi: 10.3969/j.issn.1001-6392.2011.01.014
    [42] 王建佳. 印度洋与东太平洋海隆深海热液区底栖动物初探[D]. 厦门: 自然资源部第三海洋研究所, 2012.

    Wang Jianjia. Preliminary studies on the benthos from deep-sea hydrothermal fields in Indian Ocean and East Pacific Rise[D]. Xiamen: Third Institute of Oceanography, Ministry of Natural Resources, P.R.C., 2012.
    [43] Zhang Shuqian, Zhang Suping. A new genus and species of Neomphalidae from a hydrothermal vent of the Manus Back-Arc Basin, western Pacific (Gastropoda: Neomphalina)[J]. The Nautilus, 2017, 131: 76−86.
    [44] Ren Xianqiu, Sha Zhongli. Probathylepadidae, a new family of Scalpelliformes (Thoracica: Cirripedia: Crustacea) for Probathylepas faxian gen. nov., sp. nov., from a hydrothermal vent in the Okinawa Trough[J]. Zootaxa, 2015, 4033(1): 144−150. doi: 10.11646/zootaxa.4033.1.9
    [45] Shank T M, Fornari D J, von Damm K L, et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50', East Pacific Rise)[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 1998, 45(1/3): 465−515.
    [46] 周亚东. 大西洋中脊盲虾Rimicaris exoculata种群遗传和microRNA分析以及日本对虾抗病毒活性物质筛选[D]. 杭州: 浙江大学, 2014.

    Zhou Yadong. Population genetics & microRNA analysis of Rimicaris exoculata from Mid-Atlantic Ridge and antiviral compounds screening from Marsupenaeus japonicas[D]. Hangzhou: Zhejiang University, 2014.
    [47] Teixeira S, Serrão E A, Arnaud-Haond S. Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic Ridge[J]. PLoS One, 2012, 7(6): e38521. doi: 10.1371/journal.pone.0038521
    [48] Shen Yanjun, Kou Qi, Chen Weitao, et al. Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep-sea vent and cold seep inferred from mitochondrial multi-genes[J]. Ecology and Evolution, 2016, 6(11): 3571−3582. doi: 10.1002/ece3.2132
    [49] Xu Ting, Sun Jin, Watanabe H K, et al. Population genetic structure of the deep-sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific[J]. Evolutionary Applications, 2018, 11(10): 1915−1930. doi: 10.1111/eva.12696
    [50] Liu Jun, Zhang Haibin. DNA barcoding for species identification in deep-sea clams (Mollusca: Bivalvia: Vesicomyidae)[J]. Mitochondrial DNA Part A: DNA Mapping, Sequencing, & Analysis, 2018, 29(8): 1165−1173.
    [51] Newman W A. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity?[C]// Jones M L. The Hydrothermal Vents of the Eastern Pacific: An Overview. Bulletin of the Biological Society of Washington, 1985(6): 231–242.
    [52] Little C T S, Vrijenhoek R C. Are hydrothermal vent animals living fossils?[J]. Trends in Ecology & Evolution, 2003, 18(11): 582−588.
    [53] Distel D L, Baco A R, Chuang E, et al. Do mussels take wooden steps to deep-sea vents?[J]. Nature, 2000, 403(6771): 725−726. doi: 10.1038/35001667
    [54] Lorion J, Kiel S, Faure B, et al. Adaptive radiation of chemosymbiotic deep-sea mussels[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1770): 20131243. doi: 10.1098/rspb.2013.1243
    [55] Yang Jinshu, Lu Bo, Chen Dianfu, et al. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans[J]. Molecular Biology and Evolution, 2013, 30(2): 305−309. doi: 10.1093/molbev/mss224
    [56] 鹿博. 西太平洋和印度洋海底热液口十足目系统发育及其演化关系的研究[D]. 杭州: 浙江大学, 2013.

    Lu B. Phylogeny and evolution of hydrothermal vent decapods in West Pacific and Indian Oceans[D]. Hangzhou: Zhejiang University, 2013.
    [57] Sun Shao’e, Sha Zhongli, Wang Yanrong. Phylogenetic position of Alvinocarididae (Crustacea: Decapoda: Caridea): new insights into the origin and evolutionary history of the hydrothermal vent alvinocarid shrimps[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2018, 141: 93−105. doi: 10.1016/j.dsr.2018.10.001
    [58] 郑平. 深海偏顶蛤(Bathymodiolus platifrons)对深海环境的适应性机制[D]. 青岛: 中国科学院海洋研究所, 2018.

    Zheng Ping. Adaptations to deep-sea, insights from omic studies on Bathymodiolus platifrons[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2018.
    [59] Ruan Lingwei, Bian Xiaofang, Wang Xin, et al. Molecular characteristics of the tubeworm, Ridgeia piscesae, from the deep-sea hydrothermal vent[J]. Extremophiles, 2008, 12: 735−739. doi: 10.1007/s00792-008-0172-8
    [60] 马宇光. 海底热液口蟹Gandalfus yunohana特异性基因的筛选和功能分析[D]. 杭州: 浙江大学, 2011.

    Ma Yuguang. Molecular screening and functional analysis of specific genes in the hydrothermal vent carb, Gandalfus yunohana[D]. Hangzhou: Zhejiang University, 2011.
    [61] Hui Min, Song Chengwen, Liu Yuan, et al. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis[J]. PLoS One, 2017, 12(5): e0178417. doi: 10.1371/journal.pone.0178417
    [62] Hui Min, Cheng Jiao, Sha Zhongli. First comprehensive analysis of lysine acetylation in Alvinocaris longirostris from the deep-sea hydrothermal vents[J]. BMC Genomics, 2018, 19: 352. doi: 10.1186/s12864-018-4745-3
    [63] Lan Yi, Sun Jin, Xu Ting, et al. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish[J]. BMC Genomics, 2018, 19: 394. doi: 10.1186/s12864-018-4720-z
    [64] Sun Shao’e, Hui Ming, Wang Minxiao, et al. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2018, 25: 42−52. doi: 10.1016/j.cbd.2017.11.002
    [65] Sun Shao’e, Sha Zhongli, Wang Yanrong. Complete mitochondrial genome of the first deep-sea spongicolid shrimp Spongiocaris panglao (Decapoda: Stenopodidea): novel gene arrangement and the phylogenetic position and origin of Stenopodidea[J]. Gene, 2018, 676: 123−138. doi: 10.1016/j.gene.2018.07.026
    [66] Cheng Jiao, Hui Min, Sha Zhongli. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps[J]. BMC Genomics, 2019, 20: 388. doi: 10.1186/s12864-019-5753-7
    [67] Sun Jin, Zhang Yu, Xu Ting, et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes[J]. Nature Ecology & Evolution, 2017, 1: 0121.
    [68] Zheng Ping, Wang Minxiao, Li Chaolun, et al. Insights into deep-sea adaptations and host–symbiont interactions: a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives[J]. Molecular Ecology, 2017, 26(19): 5133−5148. doi: 10.1111/mec.14160
    [69] 郭欣雨, 李超伦. 南海北部冷泉平端深海偏顶蛤的主要生化成分及其与热液和近岸种的对比研究[J]. 海洋科学, 2017, 41(7): 65−71.

    Guo Xinyu, Li Chaolun. Biochemical components of cold seep mussel Bathymodiolus platifrons from South China Sea and comparison with hydro-thermal vent and offshore mussels[J]. Marine Sciences, 2017, 41(7): 65−71.
    [70] Staudigel H, Koppers A A P, Lavelle J W, et al. Defining the word “seamount”[J]. Oceanography, 2010, 23(1): 20−21. doi: 10.5670/oceanog.2010.85
    [71] Rogers A D. Threats to seamount ecosystems and their management[M]//Charles S. World Seas: an Environmental Evaluation. 2nd ed. London: Academic Press, 2019: 427-453.
    [72] Ankarcrona J. Extract from commander Johan Ankarcrona’s report of August 4 1869[J]. Tidskrifti Sjöväsendet (Journal for the Marine), 1969: 32.
    [73] Brewin P E, Stocks K I, Menezes G. A history of seamount research[M]// Pitcher T J, Morato T, Hart P J B, et al. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell, 2007: 41–61.
    [74] Stocks K I, Clark M R, Rowden A A, et al. CenSeam, an international program on seamounts within the census of marine life: achievements and lessons learned[J]. PLoS One, 2012, 7(2): e32031. doi: 10.1371/journal.pone.0032031
    [75] Rogers A D. The biology of seamounts[J]. Advances in Marine Biology, 1994, 30: 305−350. doi: 10.1016/S0065-2881(08)60065-6
    [76] Stocks K. Seamount invertebrates: composition and vulnerability to fishing[M]//Morato T, Pauly D. Seamounts: Biodiversity and Fisheries. Canada: Fisheries Centre, University of British Columbia, 2004: 17-24.
    [77] Henry L A, Roberts J M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(4): 654−672. doi: 10.1016/j.dsr.2007.01.005
    [78] Rogers A D, Baco A, Griffiths H, et al. Corals on seamounts[M]//Pitcher T J, Morato T, Hart P J B, et al. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell, 2007: 141–169.
    [79] Lévi C. Lithistid sponges from the Norfolk Rise. Recent and Mesozoic Genera[M]//Reitner J, Keupp H. Fossil and Recent Sponges. Berlin, Heidelberg: Springer-Verlag, 1991: 72–82.
    [80] Etnoyer P, Morgan L E. Habitat-forming deep-sea corals in the Northeast Pacific Ocean[M]//Freiwald A, Roberts J M. Cold-Water Corals and Ecosystems. Berlin, Heidelberg: Springer-Verlag, 2005: 331–343.
    [81] Roux M, Messing C G. Stalked crinoids collected off California with descriptions of three new genera and two new species of Hyocrinidae (Echinodermata)[J]. Pacific Science, 2017, 71(3): 329−366. doi: 10.2984/71.3.7
    [82] Stocks K. SeamountsOnline: An online information system for seamount biology. Version 2009-1. World wide web electronic publication[EB/OL]. (2013–05–03)[2019–07–23]http://seamounts.sdsc.edu
    [83] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209−1216.

    Zhang Junlong, Xu Kuidong. Progress and prospects in seamount biodiversity[J]. Advances in Earth Science, 2013, 28(11): 1209−1216.
    [84] 韦振权, 何高文, 邓希光, 等. 大洋富钴结壳资源调查与研究进展[J]. 中国地质, 2017, 44(3): 460−472.

    Wei Zhenquan, He Gaowen, Deng Xiguang, et al. The progress in the study and survey of oceanic cobalt-rich crust resources[J]. Geology in China, 2017, 44(3): 460−472.
    [85] Gong Lin, Li Xinzheng, Qiu Jianwen. A new species of Lophophysema (Porifera, Hexactinellida, Hyalonematidae) from the South China Sea[J]. Zootaxa, 2014, 3884(6): 553−560. doi: 10.11646/zootaxa.3884.6.3
    [86] Xiao Ning, Gong Lin, Kou Qi, et al. Psychropotes verrucicaudatus, a new species of deep-sea holothurian (Echinodermata: Holothuroidea: Elasipodida: Psychropotidae) from a seamount in the South China Sea[J]. Bulletin of Marine Science, 2019, 95(3): 421−430. doi: 10.5343/bms.2018.0041
    [87] 孙松, 孙晓霞. 全面提升海洋综合探测与研究能力——中国科学院海洋先导专项进展[J]. 海洋与湖沼, 2017, 48(6): 1132−1144. doi: 10.11693/hyhz20171000254

    Sun Song, Sun Xiaoxia. Enhance the comprehensive ocean exploration and research capabilities—progress on strategic priority research program of the Chinese Academy of Sciences—western Pacific Ocean system[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1132−1144. doi: 10.11693/hyhz20171000254
    [88] Gong Lin, Li Xinzheng. A new genus and species of Pheronematidae (Porifera: Hexactinellida: Amphidiscosida) from the western Pacific Ocean[J]. Zootaxa, 2017, 4337(1): 132−140. doi: 10.11646/zootaxa.4337.1.7
    [89] Gong Lin, Li Xinzheng. A new species of Pheronematidae (Porifera: Hexactinellida: Amphidiscosida) from the Northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2018, 37(10): 175−179. doi: 10.1007/s13131-018-1322-1
    [90] Kou Qi, Gong Lin, Li Xinzheng. A new species of the deep-sea spongicolid genus Spongicoloides (Crustacea, Decapoda, Stenopodidea) and a new species of the glass sponge genus Corbitella (Hexactinellida, Lyssacinosida, Euplectellidae) from a seamount near the Mariana Trench, with a novel commensal relationship between the two genera[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 135: 88−107. doi: 10.1016/j.dsr.2018.03.006
    [91] Li Yang, Zhan Zifeng, Xu Kuidong. Morphology and molecular phylogeny of Paragorgia rubra sp. nov. (Cnidaria: Octocorallia), a new bubblegum coral species from a seamount in the tropical Western Pacific[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 803−814. doi: 10.1007/s00343-017-5320-5
    [92] Li Yang, Xu Kuidong. Paraphelliactis tangi n. sp. and Phelliactis yapensis n. sp., two new deep-sea species of Hormathiidae (Cnidaria: Anthozoa: Actiniaria) from a seamount in the tropical Western Pacific[J]. Zootaxa, 2016, 4072(3): 358−372. doi: 10.11646/zootaxa.4072.3.5
    [93] Zhang Suping, Zhang Shuqian, Wei Peng. Bayerotrochus delicatus, a new species of pleurotomariid from Yap Seamount, near Palau, Western Pacific (Gastropoda: Pleurotomariidae)[J]. Zootaxa, 2016, 4161(2): 252−260. doi: 10.11646/zootaxa.4161.2.7
    [94] Zhang S, Zhang S. Two deep-sea Calliotropis species (Gastropoda: Calliotropidae) from the western Pacific, with the description of a new species[J]. Nautilus, 2018, 132(1): 13−18.
    [95] Dong Dong, Li Xinzheng, Lu Bo, et al. Three squat lobsters (Crustacea: Decapoda: Anomura) from tropical West Pacific seamounts, with description of a new species of Uroptychus Henderson, 1888[J]. Zootaxa, 2017, 4311(3): 389−398. doi: 10.11646/zootaxa.4311.3.4
    [96] Wang Yanrong, Chan T Y, Sha Zhongli. A new deep-sea species of the genus Urocaridella (Crustacea: Decapoda: Caridea: Palaemonidea) from Yap Seamount in the Western Pacific[J]. Zootaxa, 2015, 4012(1): 191−197. doi: 10.11646/zootaxa.4012.1.11
    [97] Xiao Ning, Li Xiaomeng, Sha Zhongli. Psychropotid holothurians (Echinodermata: Holothuroidea: Elasipodida) of the tropical Western Pacific collected by the KEXUE expedition with description of one new species[J]. Marine Biology Research, 2018, 14(8): 816−826. doi: 10.1080/17451000.2018.1546012
    [98] Wang Dexiang, Wang Chunsheng, Zhang Yuan, et al. Three new species of glass sponges Pheronematidae (Porifera: Hexactinellida) from the deep-sea of the northwestern Pacific Ocean[J]. Zootaxa, 2016, 4171(3): 562−574. doi: 10.11646/zootaxa.4171.3.10
    [99] Xu Peng, Zhou Yadong, Wang Chunsheng. A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae)[J]. ZooKeys, 2017, 685: 1−14. doi: 10.3897/zookeys.685.11341
    [100] Zhang Dongsheng, Lu Bo, Wang Chunsheng, et al. The first record of Ophioleila elegans (Echinodermata: Ophiuroidea) from a deep-sea seamount in the Northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2018, 37(10): 180−184. doi: 10.1007/s13131-018-1323-0
    [101] Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190−197.
    [102] Blankenship-Williams L E, Levin L A. Living deep: A synopsis of Hadal trench ecology[J]. Marine Technology Society Journal, 2009, 43(5): 137−143. doi: 10.4031/MTSJ.43.5.23
    [103] Belyaev G M. Deep-Sea Ocean Trenches and Their Fauna[M]. Moscow: Nauka, 1989.
    [104] Jamieson A. The Hadal Zone: Life in the Deepest Oceans[M]. Cambridge: Cambridge University Press, 2015.
    [105] Zhang Ruiyan, Zhou Yadong, Lu Bo, et al. A new species in the genus Styracaster (Echinodermata: Asteroidea: Porcellanasteridae) from hadal depth of the Yap Trench in the western Pacific[J]. Zootaxa, 2017, 4338(1): 153−162. doi: 10.11646/zootaxa.4338.1.8
    [106] Kou Qi, Li Xinzheng, He Lisheng, et al. Rediscovery of the hadal species Amblyops magnus Birstein & Tchindonova, 1958 (Crustacea: Mysida: Mysidae): first record from the Mariana Trench[J]. Zootaxa, 2018, 4402(1): 42−52. doi: 10.11646/zootaxa.4402.1.2
    [107] Wang Chunsheng, Zhou Yadong, Jiang Dan, et al. Report of a chiton in the genus Leptochiton (Lepidopleurida: Lepidopleurina: Leptochitonidae) from the Yap Trench in the West Pacific Ocean[J]. Acta Oceanologica Sinica, 2018, 37(10): 205−208. doi: 10.1007/s13131-018-1327-9
    [108] Kou Qi, Meland K, Li Xinzheng, et al. Deepest record of Eucopia sculpticauda (Crustacea: Lophogastrida: Eucopiidae) and the order, with new insights into the distribution and genetic diversity of the species[J]. Bulletin of Marine Science, 2019, 95(2): 327−335. doi: 10.5343/bms.2018.0074
    [109] Lan Yi, Sun Jin, Tian Renmao, et al. Molecular adaptation in the world’s deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas[J]. Molecular Ecology, 2017, 26(14): 3732−3743. doi: 10.1111/mec.14149
    [110] Li Junyuan, Zeng Cong, Yan Guoyong, et al. Characterization of the mitochondrial genome of an ancient amphipod Halice sp. MT-2017 (Pardaliscidae) from 10, 908 m in the Mariana Trench[J]. Scientific Reports, 2019, 9: 2610. doi: 10.1038/s41598-019-38735-z
    [111] Wang Kun, Shen Yanjun, Yang Yongzhi, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation[J]. Nature Ecology & Evolution, 2019, 3(5): 823−833.
    [112] Smith C R, Kukert H, Wheatcroft R A, et al. Vent fauna on whale remains[J]. Nature, 1989, 341(6237): 27−28. doi: 10.1038/341027a0
    [113] Rouse G W, Goffredi S K, Vrijenhoek R C. Osedax: bone-eating marine worms with dwarf males[J]. Science, 2004, 305(5684): 668−671. doi: 10.1126/science.1098650
    [114] Braby C E, Rouse G W, Johnson S B, et al. Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(10): 1773−1791. doi: 10.1016/j.dsr.2007.05.014
    [115] Smith C R, Baco A R. Ecology of whale falls at the deep-sea floor[J]. Oceanography and Marine Biology, 2003, 41: 311−354.
    [116] Baco A R, Smith C R. High species richness in deep-sea chemoautotrophic whale skeleton communities[J]. Marine Ecology Progress Series, 2003, 260: 109−114. doi: 10.3354/meps260109
    [117] Zhang S Q, Zhang S P. Cocculina delphinicula sp. nov., a new cocculinid species from whale bone in the East China Sea (Gastropoda: Cocculiniformia)[J]. Zootaxa, 2018, 4455(1): 189−195. doi: 10.11646/zootaxa.4455.1.9
  • 加载中
计量
  • 文章访问数:  588
  • HTML全文浏览量:  65
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-09-04
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回