留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台湾近海热液体系独特的生物及地球化学特征

陈雪刚 吴斌 郑豪 樊炜 叶瑛 陈镇东

陈雪刚,吴斌,郑豪,等. 台湾近海热液体系独特的生物及地球化学特征[J]. 海洋学报,2019,41(10):161–168,doi:10.3969/j.issn.0253−4193.2019.10.010
引用本文: 陈雪刚,吴斌,郑豪,等. 台湾近海热液体系独特的生物及地球化学特征[J]. 海洋学报,2019,41(10):161–168,doi:10.3969/j.issn.0253−4193. 2019.10.010
Chen Xuegang,Wu Bin,Zheng Hao, et al. Hydrothermal systems at offshore Taiwan: Unique biological and geochemical characteristics[J]. Haiyang Xuebao,2019, 41(10):161–168,doi:10.3969/j.issn.0253−4193.2019.10.010
Citation: Chen Xuegang,Wu Bin,Zheng Hao, et al. Hydrothermal systems at offshore Taiwan: Unique biological and geochemical characteristics[J]. Haiyang Xuebao,2019, 41(10):161–168,doi:10.3969/j.issn.0253−4193. 2019.10.010

台湾近海热液体系独特的生物及地球化学特征

doi: 10.3969/j.issn.0253-4193.2019.10.010
详细信息
    作者简介:

    陈雪刚(1983—),男,浙江省衢州市人,从事海底热液地球化学研究。E-mail: chenxg83@zju.edu.cn

    通讯作者:

    陈镇东,男,讲座教授,主要研究海底热液活动以及海洋碳循环。E-mail: ctchen@mail.nsysu.edu.tw

  • Lebrato M, Garbe-Schönberg D, Tseng L C, et al. Earthquake and typhoon trigger shifts in shallow vents biogeochemistry analogous to human-made ocean disturbances[J]. Submitted to Scientific Reports, 2019.
  • 中图分类号: P722.6; P738.6

Hydrothermal systems at offshore Taiwan: Unique biological and geochemical characteristics

  • 摘要: 台湾地处西太平洋构造活动带,近海发育了多处热液活动,其中最典型的为龟山岛和绿岛热液体系。本文对海峡两岸在龟山岛和绿岛热液的地球化学特征以及周边生物体的响应的研究进展进行了综述。龟山岛热液喷出流体具有全球最低的pH(1.52),富含重金属元素和CO2等酸性气体,是周围海水中有色溶解有机质的来源;绿岛具有全球热液中最低的溶解有机碳浓度(14 μmol /L),且具有特殊的动力学特性。喷口周边分布了较为罕见的自然硫烟囱体和硫磺球。喷口的高毒性、高酸性热液改变了热液区生物体如螃蟹的生活习性和解毒机制。热液区的主要活跃菌群为参与碳、硫和氮代谢途径的γ-和ε-变形菌。主要生物质合成以硫还原和硫氧化的化能无机自养型生物为主,微生物硫代谢促进了热液系统中的微生物能量流动和元素循环作用。某些热液生物采用繁殖期迁徙的机制应对高毒性、高酸性热液环境。在热液活动的胁迫下,这些微生物产生了新颖独特的代谢产物。此外,龟山岛和绿岛热液体系还受到了潮汐、台风和地震等灾害性事件的影响。台湾近海热液体系的研究对认识热液地球化学循环、探讨热液的生态环境效应等具有重要的意义。
    1)  Lebrato M, Garbe-Schönberg D, Tseng L C, et al. Earthquake and typhoon trigger shifts in shallow vents biogeochemistry analogous to human-made ocean disturbances[J]. Submitted to Scientific Reports, 2019.
  • 图  1  台湾近海构造地质背景(a);龟山岛热液系统的远景和俯瞰图(b, c);绿岛热液体系的典型喷口(d)

    Fig.  1  Geological setting of offshore Taiwan (a); outlook of the Kueishantao hydrothermal system (b, c); and a typical vent of the Lutao geothermal field (d)

    图  2  自主研制的热液保真采样器在龟山岛热液喷口进行采样 (a);原位化学传感器链获得的龟山岛海域pH分布[6] (b)

    Fig.  2  Fluid sampling at the Kueishantao vents using self-made samplers (a); spatial distribution pattern of pH in the Kueishantao field that collected using in-situ chemical sensors[6] (b)

    图  3  龟山岛热液独特的自然硫烟囱体(a)、硫磺丘(b)、硫磺球(c)和热液喷口周围生活的特有物种乌龟怪方蟹(d)

    Fig.  3  the unique native sulfur chimney (a), sulfur mound (b), sulfur balls (c), and Xenograpsus testudinatus of the Kueishantao hydrothermal system (d)

    图  4  龟山岛热液流体温度受到全日潮的影响,2000年台风“碧利斯”摧毁了所监测的喷口使其不再活动[4] (a);潮汐对绿岛热液“户外池”水深的影响(b)

    Fig.  4  The Kueishantao vent fluids were affected by diurnal tides, and the Typhoon “Bilis” at 2000 destroyed the monitored vent (a); semi-diurnal oscillation of water depth induced by tide of the Lutao hydrothermal system (b)

    图  5  热液口微生物介导的生物地球化学过程,以及这些独特生态系统中碳、硫和氮循环的可能耦合机制(根据文献[23]重新绘制)

    rTCA/CCB表示还原性三羧酸循环/卡尔文循环

    Fig.  5  Microbial involved biogeochemical process, and the carbon, sulfur and nitrogen cycles and possible coupling mechanisms of this unique hydrothermal ecological system (modified from referance [23])

    rTCA/CCB represents reductive tricarboxylic acid cycle/Calvin-Benson-Bassham cycle

    图  6  从龟山岛热口微生物中分离鉴定的首次从自然界发现的物质

    Fig.  6  The new compounds extracted from the micro-organisms living near the Kueishantao hydrothermal vents

  • [1] Chen C T A, Wang B J, Huang J F, et al. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China[J]. Acta Oceanologica Sinica, 2005, 24(1): 125−133.
    [2] Zheng Hao, Xu Changdong, Yang Liyang, et al. Diurnal variations of dissolved organic matter in the hydrothermal system of Green Island, Taiwan[J]. Marine Chemistry, 2017, 195: 61−69. doi: 10.1016/j.marchem.2017.05.003
    [3] Shen Chuanchou, Wu C C, Dai Changfeng, et al. Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan[J]. Journal of Asian Earth Sciences, 2018, 156: 201−206. doi: 10.1016/j.jseaes.2018.01.016
    [4] Chen C T A, Zeng Zhigang, Kuo Fuwen, et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan[J]. Chemical Geology, 2005, 224(1/3): 69−81.
    [5] Wu Shijun, Yang Canjun, Chen C T A. A handheld sampler for collecting organic samples from shallow hydrothermal vents[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1951−1958. doi: 10.1175/JTECH-D-12-00189.1
    [6] Han Chenhua, Ye Ying, Pan Yiwen, et al. Spatial distribution pattern of seafloor hydrothermal vents to the southeastern Kueishan Tao offshore Taiwan Island[J]. Acta Oceanologica Sinica, 2014, 33(4): 37−44. doi: 10.1007/s13131-014-0405-x
    [7] Ding Qian, Pan Yiwen, Huang Yuanfeng, et al. The optimization of Ag/Ag2S electrode using carrier electroplating of nano silver particles and its preliminary application to offshore Kueishan Tao, Taiwan[J]. Continental Shelf Research, 2015, 111: 262−267. doi: 10.1016/j.csr.2015.08.018
    [8] Chen Xuegang, Lyu S S, Garbe-Schönberg D, et al. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan[J]. Journal of Marine Systems, 2018, 180: 211−219. doi: 10.1016/j.jmarsys.2016.11.018
    [9] Zeng Zhigang, Wang Xiaoyuan, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59−66. doi: 10.1016/j.marchem.2013.09.001
    [10] Hung J J, Yeh H Y, Peng S H, et al. Influence of submarine hydrothermalism on sulfur and metal accumulation in surface sediments in the Kueishantao venting field off northeastern Taiwan[J]. Marine Chemistry, 2018, 198: 88−96. doi: 10.1016/j.marchem.2017.12.004
    [11] Zeng Zhigang, Chen C T A, Yin Xuebo, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: Evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences, 2011, 40(2): 661−671. doi: 10.1016/j.jseaes.2010.10.019
    [12] Zeng Zhigang, Liu Changhua, Chen C T A, et al. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1746−1753. doi: 10.1007/s11430-007-0092-y
    [13] Yu Mingzhen, Chen Xuegang, Garbe-Schönberg D, et al. Volatile chalcophile elements in native sulfur from a submarine hydrothermal system at Kueishantao, offshore NE Taiwan[J]. Minerals, 2019, 9(4): 245. doi: 10.3390/min9040245
    [14] Chen Xuegang, Zhang Haiyan, Li Xiaohu, et al. The chemical and isotopic compositions of gas discharge from shallow-water hydrothermal vents at Kueishantao, offshore northeast Taiwan[J]. Geochemical Journal, 2016, 50(4): 341−355. doi: 10.2343/geochemj.2.0425
    [15] Lin Y S, Lui H K, Lee J, et al. Fates of vent CO2 and its impact on carbonate chemistry in the shallow-water hydrothermal field offshore Kueishantao Islet, NE Taiwan[J]. Marine Chemistry, 2019, 210: 1−12. doi: 10.1016/j.marchem.2019.02.002
    [16] Yang T F, Lan T F, Lee H F, et al. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications[J]. Geochemical Journal, 2005, 39(5): 469−480. doi: 10.2343/geochemj.39.469
    [17] Chen Xuegang, Lyu Shuangshuang, Zhang Pingping, et al. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities[J]. Journal of Volcanology and Geothermal Research, 2018, 353: 1−10. doi: 10.1016/j.jvolgeores.2018.01.013
    [18] Yang Liyang, Zhuang Wane, Chen C T A, et al. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC[J]. Water Research, 2017, 111: 195−203. doi: 10.1016/j.watres.2017.01.001
    [19] Yang Liyang, Hong Huasheng, Guo Weidong, et al. Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan[J]. Marine Chemistry, 2012, 128-129: 64−71. doi: 10.1016/j.marchem.2011.10.003
    [20] Chiang H T, Shyu C, Chang H, et al. Geothermal monitoring of Kueishantao Island offshore of northeastern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2010, 21(3): 563−573. doi: 10.3319/TAO.2009.11.02.01(TH)
    [21] Hung J J, Yeh H Y, Peng S H, et al. External-forcing modulation on temporal variations of hydrothermalism-evidence from sediment cores in a submarine venting field off northeastern Taiwan[J]. PLoS One, 2018, 13(11): e0207774. doi: 10.1371/journal.pone.0207774
    [22] Tang Kai, Liu Keshao, Jiao Nianzhi, et al. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system[J]. PLoS One, 2013, 8(8): e72958. doi: 10.1371/journal.pone.0072958
    [23] Li Yufang, Tang Kai, Zhang Lianbao, et al. Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem[J]. Frontiers in Microbiology, 2018, 9: 2718. doi: 10.3389/fmicb.2018.02718
    [24] Zhang Yao, Zhao Zihao, Chen C T A, et al. Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems[J]. PLoS One, 2012, 7(9): e44593. doi: 10.1371/journal.pone.0044593
    [25] Zeng Zhigang, Ma Yao, Wang Xiaoyuan, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 90−101. doi: 10.1016/j.jmarsys.2016.08.012
    [26] Jeng M S, Ng N K, Ng P K L. Feeding behaviour: Hydrothermal vent crabs feast on sea “snow”[J]. Nature, 2004, 432(7020): 969. doi: 10.1038/432969a
    [27] Hung J J, Peng S H, Chen C T A, et al. Reproductive adaptations of the hydrothermal vent crab Xenograpus testudinatus: An isotopic approach[J]. PLoS One, 2019, 14(2): e0211516. doi: 10.1371/journal.pone.0211516
    [28] Hsiao S H, Fang T H. Hg bioaccumulation in marine copepods around hydrothermal vents and the adjacent marine environment in northeastern Taiwan[J]. Marine Pollution Bulletin, 2013, 74(1): 175−182. doi: 10.1016/j.marpolbul.2013.07.007
    [29] Wang Tengwei, Chan T Y, Chan B K K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: a combined morphological, gut content analysis and stable isotope approach[J]. Marine Biology, 2014, 161(11): 2447−2463. doi: 10.1007/s00227-014-2479-6
    [30] Chen Y J, Wu J Y, Chen C T A, et al. Effects of low-pH stress on shell traits of the dove snail, Anachis misera, inhabiting shallow-vent environments off Kueishan Islet, Taiwan[J]. Biogeosciences, 2015, 12(9): 2631−2639. doi: 10.5194/bg-12-2631-2015
    [31] Jiang Wei, Ye Panpan, Chen C T A, et al. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU[J]. Marine Drugs, 2013, 11(12): 4761−4772. doi: 10.3390/md11124761
    [32] Jiang Wei, Zhong Yuqian, Shen Li, et al. Stress-driven discovery of natural products from extreme marine environment-Kueishantao hydrothermal vent, a case study of metal switch valve[J]. Current Organic Chemistry, 2014, 18(7): 925−934. doi: 10.2174/138527281807140515155705
    [33] Pan Chengqian, Shi Yutong, Chen Xuegang, et al. New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4[J]. Organic & Biomolecular Chemistry, 2017, 15(5): 1155−1163.
    [34] Shi Yutong, Pan Chengqian, Wang Kuiwu, et al. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery[J]. Environmental Microbiology, 2017, 19(9): 3606−3618. doi: 10.1111/1462-2920.13858
    [35] Pan Chengqian, Shi Yuotong, Auckloo B N, et al. Four verrucosidin derivatives isolated from the hydrothermal vent sulfur-derived fungus Penicillium sp. Y-50-10[J]. Chemistry of Natural Compounds, 2018, 54(2): 253−256. doi: 10.1007/s10600-018-2316-0
    [36] Shi Yutong, Pan Chengqian, Cen Suoyu, et al. Comparative metabolomics reveals defence-related modification of citrinin by Penicillium citrinum within a synthetic Penicillium–Pseudomonas community[J]. Environmental Microbiology, 2019, 21(1): 496−510. doi: 10.1111/1462-2920.14482
    [37] Ye Panpan, Shen Ling, Jiang Wei, et al. Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of Clavatustide B[J]. Marine Drugs, 2014, 12(6): 3203−3217. doi: 10.3390/md12063203
    [38] Ding Chihong, Wu Xiaodan, Auckloo B N, et al. An unusual stress metabolite from a hydrothermal vent fungus Aspergillus sp. WU 243 induced by cobalt[J]. Molecules, 2016, 21(1): 105. doi: 10.3390/molecules21010105
    [39] Pan Chengqian, Shi Yutong, Auckloo B N, et al. Isolation and antibiotic screening of fungi from a hydrothermal vent site and characterization of secondary metabolites from a Penicillium isolate[J]. Marine Biotechnology, 2017, 19(5): 469−479. doi: 10.1007/s10126-017-9765-5
  • 加载中
图(6)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  20
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 修回日期:  2019-08-19
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回