留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆架海岸台风沉积记录及信息提取

高抒 贾建军 杨阳 周亮 魏稳 梅衍俊 李亚南 王黎 赵培培 刘桢峤 张丽芬

高抒,贾建军,杨阳,等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报,2019,41(10):141–160,doi:10.3969/j.issn.0253−4193.2019.10.009
引用本文: 高抒,贾建军,杨阳,等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报,2019,41(10):141–160,doi:10.3969/j.issn.0253−4193.2019.10.009
Gao Shu,Jia Jianjun,Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao,2019, 41(10):141–160,doi:10.3969/j.issn.0253−4193.2019.10.009
Citation: Gao Shu,Jia Jianjun,Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao,2019, 41(10):141–160,doi:10.3969/j.issn.0253−4193.2019.10.009

陆架海岸台风沉积记录及信息提取

doi: 10.3969/j.issn.0253-4193.2019.10.009
基金项目: 国家自然科学基金重点项目—海岸风暴频率–强度关系的沉积记录分析(41530962)。
详细信息
    作者简介:

    高抒(1956—),男,浙江省杭州市人,教授,主要从事海洋沉积动力学和沉积地质学研究。E-mail:sgao@sklec.ecnu.edu.cn

  • 中图分类号: P736.21; P732.5

Obtaining typhoon information from sedimentary records in coastal-shelf waters

  • 摘要: 长时间尺度风暴强度–频率关系与气候变化相关联,而器测记录和历史记载难以提供充分的信息,因此从沉积记录中提取风暴信息成为一个前沿科学问题。在应用上,这项研究可为海岸带城市群应对未来气候和海面变化提供决策依据。本文回顾了台风沉积记录研究进展,显示陆架泥质沉积、海滩及海岸沙丘、潮滩、潟湖、巨砾是台风事件记录的良好载体,可通过层序形态和物质特性分析而识别。同时,还需进一步完善分析方法,以区分台风、冬季风暴、河流洪水和海啸等不同类型的极端事件沉积。在台风强度信息提取方面,陆架泥质沉积所含贝壳–粗颗粒沉积物可作为海底再悬浮强度的指标,但需更多实测数据的率定;海滩及海岸沙丘顶部的台风沉积分布高程指示了台风激浪流的上冲高度,而台风巨砾的重量可以与近岸波浪的波高建立联系。以上数据经过换算后可以得出台风强度的信息,虽然这些间接的沉积学信息还不足以建立风暴强度–频率关系,但有助于台风强度大数据的建立。潮滩、潟湖沉积连续性好,可构成台风事件的时间序列,然而关于台风强度却是多解的,台风最大风力、持续时间、移动路径、登陆地点的不同组合可能产生同样的事件沉积。我们建议,应发展台风信息提取的新方法,来解决这个问题。进行现代过程模拟,根据已知的台风事件资料构建沉积物输运堆积模型,使之能够复演事件沉积的特征;进行多个地点事件沉积的反演模拟,在此情形下,即便每个站位的结果是多解的,但针对多个站位上求取其解的交集之后,多解性将下降,这种模拟方法可称之为“解空间收缩法”;采用大数据融合方式,将其他来源的台风强度数据纳入模拟体系,可进一步降低风暴信息提取的不确定性。动力过程模拟与大数据融合方法的建立,有助于获得与沉积记录同样时间尺度的台风强度–频率关系曲线,进而分析台风动态与气候变化的关系。
  • 图  1  全球台风发源、生长区分布[2]

    1. 大西洋(包括北大西洋、墨西哥湾和加勒比海);2. 东北太平洋(由墨西哥至日期变更线);3. 西北太平洋(由日期变更线至亚洲包括南海);4. 北印度洋(包括孟加拉湾和阿拉伯海);5. 西南印度洋(非洲至100°E);6. 东南印度洋/澳大利亚(100°~142°E);7. 澳大利亚/西南太平洋(142°E~120°W);RSMC表示区域性专职气象中心

    Fig.  1  Global distribution of tropical cyclone source areas[2]

    1. Atlantic basin (including the North Atlantic, the Gulf of Mexico, and the Caribbean Sea); 2. northeast Pacific Ocean (from Mexico to the International Date Line); 3. northwest Pacific Ocean (from the International Date Line to Asia, including the South China Sea); 4. north Indian Ocean (including the Bay of Bengal and the Arabian Sea); 5. southwest Indian Ocean (from Africa to 100°E); 6. Southeast Indian Ocean/Australia (100°E to 142°E); 7. Australia/Southwest Pacific Ocean (142°E to 120°W); RSMC denotes Regional Specialized Meteorological Center

    图  2  台风形成的基本条件示意图

    Fig.  2  Schematic diagram of basic conditions for typhoon formation

    图  3  现场观测仪器架设方案

    a和b为潮滩观测常规仪器,RBR观测水位、有效波高、有效波周期,ADCP和Aquadopp观测剖面流速,ADV观测定点三维流速和底部高程,OBS观测定点悬沙浓度,ASM观测剖面悬沙浓度。c和d分别为潟湖水文观测的流速仪和水位仪(修改自文献[20-21])

    Fig.  3  Instrument deployment for in site observations

    a and b are conventional instruments for tidal flat observation including RBR (water level, significant wave-height, significant wave-period), ADCP and Aquadopp (current velocity profile), ADV (3d velocity and bed level), OBS (suspended sediment concentration) and ASM (suspended sediment concentration profile); c is current meter for lagoon environment observations; and d is water level gauge (modified from references [20-21])

    图  4  西北太平洋台风特征

    a为1945–2010年台风路径图(灰色线条是台风路径,黑点是台风源地,修改自文献[22]);b为台风路径分类简图:(1)代表NW-N向移动,主要登陆东亚地区,(2)代表W-NW向移动,主要登陆东南亚和我国华南地区,(3)和(4)代表NW-NE向移动,较少登陆(据文献[23]绘制)

    Fig.  4  Typhoon characteristics in the Northwest Pacific region

    a is typhoon tracks from 1945 to 2010 (gray lines indicate the typhoon tracks and the black points indicate typhoon genesis, modified from reference [22]); b is four types of typhoon tracks: (1) represents typhoons traveling towards NW-N, with around 75% of them causing landfall over East Asia, (2) represents typhoons moving towards W-NW, with 97% of them striking Southeast Asia and/or southern China, and (3) and (4) represent typhoons moving towards NW and NE, with a small probability of reaching land (modified from reference [23])

    图  5  1960–2017年西北太平洋台风频次和持续时间年际变化特征

    a.台风频次; b.持续时间

    Fig.  5  Interannual variations of frequency and duration of typhoons in the western Pacific from 1960 to 2017

    a.Typhoon frequency; b. duration of typhoon

    图  6  潟湖(a,b,c)、潮滩(d)、海岸沙丘(e)和陆架(f)环境下典型台风沉积的垂向序列(修改自文献[65-68])

    Fig.  6  Vertical sedimentary sequence of typical typhoon deposition in lagoons (a, b, c), tidal flats (d), coastal dunes (e) and shelfs (f) (modified from references [65-68])

    图  7  风暴沉积的岩芯光学图像(a)、X射线照片(b)、粒径分析图(c)和X射线荧光光谱图(d, e)

    X射线照片白色层为砂砾质物质,深灰色层为细颗粒沉积物(据文献[75]改绘)

    Fig.  7  Optical image (a), X-radiograph (b), grain-size (c) and X-ray fluorescence (d, e) from representative storm deposits

    For X-radiographs, white layer represents coarse-grained, dense sandy material and black layer represents fine-grained, organic-rich fair-weather, backbarrier deposits (modified from reference [75])

    图  8  世界范围内已发现的不同成因的海岸巨砾沉积(改绘自文献[106-107])

    Fig.  8  Global distribution of coastal boulders with different causes (modified from references [106] and [107])

    图  9  典型台风巨砾沉积(摄于海南岛小东海)

    Fig.  9  Typical typhoon boulder deposits (Xiaodonghai, Hainan Island)

    图  10  不同特征风暴沉积记录的冲淤属性示意图

    Fig.  10  Diagram showing erosion and deposition properties of storm sedimentary records

    图  11  沉积记录和参数统计模型建立的台风强度–频率曲线

    风速代表了台风强度,虚线为95%置信区间(修改自文献[165]);只有最上端的一个数据点来自沉积记录

    Fig.  11  Typhoon intensity-frequency curve based on sediment record and parametric statistical model

    The wind speed represents the typhoon intensity, and the dotted lines reveal the 95% confidence interval (modified from reference [165]). Only one data point from the top was derived from the sedimentary record

  • [1] Holland G J. Global Guide to Tropical Cyclone Forecasting[M]. Switzerland: World Meteorological Organization, Geneva, 1993.
    [2] NOAA. Subject: F1 What regions around the globe have tropical cyclones and who is responsible for forecasting there?[EB/OL]. (2014)[2019–05–30] https://www.aoml.noaa.gov/hrd/tcfaq/F1.html.
    [3] Elsner J B, Liu K B. Examining the ENSO-typhoon hypothesis[J]. Climate Research, 2003, 25: 43−54. doi: 10.3354/cr025043
    [4] Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906
    [5] Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465. doi: 10.1038/nature05834
    [6] 廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(19): 2907−2922.

    Liu K B, Fan Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology[J]. Chinese Science Bulletin, 2008, 53(19): 2907−2922.
    [7] Vecchi G A, Villarini G. Next season's hurricanes[J]. Science, 2014, 343(6171): 618−619. doi: 10.1126/science.1247759
    [8] Tian Yuan, Fan Dejiang, Zhang Xilin, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109−121. doi: 10.1016/j.margeo.2018.12.010
    [9] 任美锷, 张忍顺, 杨巨海, 等. 风暴潮对淤泥质海岸的影响—以江苏省淤泥质海岸为例[J]. 海洋地质与第四纪地质, 1983, 3(4): 1−24.

    Ren Meie, Zhang Renshun, Yang Juhai, et al. The influence of storm tide on mud plain coast—with special reference to Jiangsu Province[J]. Marine Geology & Quaternary Geology, 1983, 3(4): 1−24.
    [10] Yang Shilun, Friedrichs C T, Shi Zhong, et al. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm[J]. Estuaries, 2003, 26(6): 1416−1425. doi: 10.1007/BF02803650
    [11] 柏春广, 王建, 徐永辉. 江苏中部海岸全新世中期温暖期风暴潮频率的研究[J]. 海洋学报, 2006, 28(6): 78−85. doi: 10.3321/j.issn:0253-4193.2006.06.011

    Bo Chunguang, Wang Jian, Xu Yonghui. Researches on coastal storm surge frequency during the warm period of Middle Holocene in central Jiangsu Province in China[J]. Haiyang Xuebao, 2006, 28(6): 78−85. doi: 10.3321/j.issn:0253-4193.2006.06.011
    [12] 王爱军, 叶翔, 陈坚. 台风作用下的港湾型潮滩沉积过程—以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报, 2009, 31(6): 77−86. doi: 10.3321/j.issn:0253-4193.2009.06.009

    Wang Aijun, Ye Xiang, Chen Jian. Effects of typhoon on sedimentary processes of embayment tidal flat—A case study from the “Fenghuang” typhoon in 2008[J]. Haiyang Xuebao, 2009, 31(6): 77−86. doi: 10.3321/j.issn:0253-4193.2009.06.009
    [13] Woodruff J D, Donnelly J P, Okusu A. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan[J]. Quaternary Science Reviews, 2009, 28(17/18): 1774−1785.
    [14] Zhou Liang, Gao Shu, Yang Yang, et al. Typhoon events recorded in coastal lagoon deposits, southeastern Hainan Island[J]. Acta Oceanologica Sinica, 2017, 36(4): 37−45. doi: 10.1007/s13131-016-0918-6
    [15] Williams H, Choowong M, Phantuwongraj S, et al. Geologic records of Holocene typhoon strikes on the Gulf of Thailand coast[J]. Marine Geology, 2016, 372: 66−78. doi: 10.1016/j.margeo.2015.12.014
    [16] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979.

    Chen Lianshou, Ding Yihui. Introduction to the Western Pacific Typhoons[M]. Beijing: Science Press, 1979.
    [17] Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669−700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
    [18] Gray W M. Hurricanes: Their formation, structure and likely role in the tropical circulation[M]//Shaw D B. Meteorology Over the Tropical Oceans. Bracknell: Royal Meteorological Society, James Glaisher House, Grenville Place, 1979: 155–218.
    [19] 马艳. 台风海面风场的动力分析、四维同化及数值试验[D]. 青岛: 中国科学院海洋研究所, 2000.

    Ma Yan. Dynamical analyses, four-dimensional data assimilation and numerical experiment for typhoon sea surface wind[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2000.
    [20] 魏稳. 长江河口边滩多时间尺度动力地貌过程[D]. 上海: 华东师范大学, 2017.

    Wei Wen. Multi-time-scale morphodynamics of the Changjiang estuarine marginal shoal[D]. Shanghai: East China Normal University, 2017.
    [21] Maio C V, Donnelly J P, Sullivan R, et al. Sediment dynamics and hydrographic conditions during storm passage, Waquoit Bay, Massachusetts[J]. Marine Geology, 2016, 381: 67−86. doi: 10.1016/j.margeo.2016.07.004
    [22] Hung C W. A 300-year typhoon record in Taiwan and the relationship with solar activity[J]. Terr. Terrestrial, Atmospheric and Oceanic Sciences, 2013, 24(4): 737−743.
    [23] Mei W, Xie S P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [24] Wei Z J, Tang D L, Sui G J. An inferential statistical study on the climate characteristics of tropical cyclones over the Northwestern Pacific[M]//Tang D, Sui G. Typhoon Impact and Crisis Management. Berlin, Heidelberg: Springer, 2014: 333–349.
    [25] Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4): 289−294. doi: 10.1038/nclimate1410
    [26] Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448
    [27] Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014
    [28] Emanuel K A. The dependence of hurricane intensity on climate[J]. Nature, 1987, 326(6112): 483−485. doi: 10.1038/326483a0
    [29] Knutson T R, Tuleya R E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization[J]. Journal of Climate, 2004, 17(18): 3477−3495. doi: 10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2
    [30] Knutson T R, McBride J L, Chan J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157−163. doi: 10.1038/ngeo779
    [31] Liu K B, Shen Caiming, Louie K S. A 1, 000-Year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese historical documentary records[J]. Annals of the Association of American Geographers, 2001, 91(3): 453−464. doi: 10.1111/0004-5608.00253
    [32] García-Herrera R, Durán F R, Wheleerb D, et al. The use of Spanish and British documentary sources in the investigation of Atlantic hurricane incidence in historical times[M]//Murname R, Liu K B. Hurricanes and Typhoons: Past, Present and Future. New York: Columbia University Press, 2004.
    [33] Grossman M, Zaiki M. Reconstructing typhoons in Japan in the 1880s from documentary records[J]. Weather, 2009, 64(12): 315−322. doi: 10.1002/wea.401
    [34] 王苏民, 刘健, 周静. 我国小冰期盛期的气候环境[J]. 湖泊科学, 2003, 15(4): 369−376. doi: 10.3321/j.issn:1003-5427.2003.04.013

    Wang Sumin, Liu Jian, Zhou Jing. The climate of Little Ice Age maximum in China[J]. Journal of Lake Sciences, 2003, 15(4): 369−376. doi: 10.3321/j.issn:1003-5427.2003.04.013
    [35] 陆人骥. 中国历代灾害性海潮史料[M]. 北京: 海洋出版社, 1984.

    Lu Renji. Compiling Data on Disastrous Storm Tides in Different Dynasties of China [M]. Beijing: China Ocean Press, 1984.
    [36] 火恩杰, 刘昌森. 上海地区自然灾害史料汇编(公元751–1949 年)[M]. 北京: 地震出版社, 2002.

    Huo Enjie, Liu Changsen. Compilation of Natural Disaster Data from 751 to 1949 in Shanghai [M]. Beijing: Earthquake Press, 2002.
    [37] 张德二. 中国三千年气象记录总集[M]. 南京: 江苏教育出版社, 2004.

    Zhang Deer. A Compendium of Chinese Meteorological Records of the Last 3000 Year[M]. Nanjing: Jiangsu Education Publishing House, 2004.
    [38] 梁有叶, 张德二. 最近一千年来我国的登陆台风及其与ENSO的关系[J]. 气候变化研究进展, 2007, 3(2): 120−121. doi: 10.3969/j.issn.1673-1719.2007.02.011

    Liang Youye, Zhang Deer. Landing typhoon in China during the last millennium and its relationship with ENSO[J]. Advances in Climate Change Research, 2007, 3(2): 120−121. doi: 10.3969/j.issn.1673-1719.2007.02.011
    [39] Louie K S, Liu K B. Earliest historical records of typhoons in China[J]. Journal of Historical Geography, 2003, 29(3): 299−316. doi: 10.1006/jhge.2002.0453
    [40] 王美苏. 清代入境中国东部沿海台风事件初步重建[D]. 上海: 复旦大学, 2010.

    Wang Meisu. A reconstruction of historical typhoon event invading the coast of East China from historical documentary: 1644–1911[D]. Shanghai: Fudan University, 2010.
    [41] Zhang Xiangping, Ye Yu, Fang Xiuqi. Reconstruction of typhoons in the Yangtze River Delta during 1644–1949AD based on historical chorographies[J]. Journal of Geographical Sciences, 2012, 22(5): 810−824. doi: 10.1007/s11442-012-0965-7
    [42] 徐明, 杨秋珍, 应明, 等. 影响华东台风 500 年历史资料重建方法[C]//2007年中国气象学会年会论文集. 北京: 气象出版社, 2007: 1000-1009.

    Xu Ming, Yang Qiuzhen, Ying Ming, et al. Reconstruction method of 500 years historical typhoon data impacting East China[C]//Annual Meeting of China Meteorological Society in 2007. Beijing: China Meteorological Press, 2007: 1000–1009.
    [43] 潘威, 满志敏, 刘大伟, 等. 1644–1911年中国华东与华南沿海台风入境频率[J]. 地理研究, 2014, 33(11): 2195−2204.

    Pan Wei, Man Zhimin, Liu Dawei, et al. The changing of Chinese coastal typhoon frequency based on historical documents, 1644–1911AD[J]. Geographical Research, 2014, 33(11): 2195−2204.
    [44] 刘大伟. 清代入境中国南部沿海台风事件初步重建[D]. 上海: 复旦大学, 2013.

    Liu Dawei. Preliminary reconstruction of China's southern coastal typhoon events at Qing dynasty[D]. Shanghai: Fudan University, 2013.
    [45] 日下部正雄. 史料からみた西日本の気象災害—第2報台风[J]. 天気, 1960, 7(1): 16−21.

    Kusakabe M. Historical review of meteorological damage in west part of Japan, II Typhoons[J]. Tenki, 1960, 7(1): 16−21.
    [46] 小西達男. 1828年シーボルト台風(子年の大風)と高潮[J]. 天気, 2010, 57(6): 383−398.

    Konishi T. Siebold typhoon in 1828 (Otherwise “Nenotoshi” Typhoon) and induced storm surges[J]. Tenki, 2010, 57(6): 383−398.
    [47] 周亮, 高抒, 杨阳, 等. 海南岛东南部海湾350年古风暴事件沉积与历史文献记录对比[J]. 海洋学报, 2015, 37(9): 84−94. doi: 10.3969/j.issn.0253-4193.2015.09.009

    Zhou Liang, Gao Shu, Yang Yang, et al. Comparison of paleostorm events between sedimentary and historical archives: A 350 year record from southeastern Hainan Island coastal embayments[J]. Haiyang Xuebao, 2015, 37(9): 84−94. doi: 10.3969/j.issn.0253-4193.2015.09.009
    [48] Schuerch M, Dolch T, Reise K, et al. Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea)[J]. Progress in Physical Geography, 2014, 38(6): 691−715. doi: 10.1177/0309133314548746
    [49] 苗丽敏, 杨世伦, 朱琴, 等. 风暴过程中潮滩悬沙浓度和悬沙输运的变化及其动力机制——以长江三角洲南汇潮滩为例[J]. 海洋学报, 2016, 38(5): 158−167. doi: 10.3969/j.issn.0253-4193.2016.05.015

    Miao Limin, Yang Shilun, Zhu Qin, et al. Variations of suspended sediment concentrations and transport in response to a storm and its dynamic mechanism—A study case of Nanhui tidal flat of the Yangtze River Delta[J]. Haiyang Xuebao, 2016, 38(5): 158−167. doi: 10.3969/j.issn.0253-4193.2016.05.015
    [50] Rosencranz J A, Ganju N K, Ambrose R F, et al. Balanced sediment fluxes in Southern California's Mediterranean-climate zone salt marshes[J]. Estuaries and Coasts, 2016, 39(4): 1035−1049. doi: 10.1007/s12237-015-0056-y
    [51] Janssen-Stelder B. The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea[J]. Continental Shelf Research, 2000, 20(12/13): 1461−1478.
    [52] Mariotti G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss?[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(7): 1391−1407. doi: 10.1002/2016JF003900
    [53] Priestas A M, Mariotti G, Leonardi N, et al. Coupled wave energy and erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA[J]. Journal of Marine Science and Engineering, 2015, 3(3): 1041−1065. doi: 10.3390/jmse3031041
    [54] Xie Weiming, He Qing, Zhang Keqi, et al. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale[J]. Geomorphology, 2017, 292: 47−58. doi: 10.1016/j.geomorph.2017.04.034
    [55] Fagherazzi S, Carniello L, D’Alpaos L, et al. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(22): 8337−8341. doi: 10.1073/pnas.0508379103
    [56] Anthony E J. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea[J]. Geomorphology, 2013, 199: 8−21. doi: 10.1016/j.geomorph.2012.06.007
    [57] Hill H W, Kelley J T, Belknap D F, et al. The effects of storms and storm-generated currents on sand beaches in southern Maine, USA[J]. Marine Geology, 2004, 210(1/4): 149−168.
    [58] Short A D. Beach systems of the central netherlands coast: processes, morphology and structural impacts in a storm driven multi-bar system[J]. Marine Geology, 1992, 107(1/2): 103−137.
    [59] Castelle B, Bonneton P, Dupuis H, et al. Double bar beach dynamics on the high-energy meso-macrotidal french aquitanian coast: a review[J]. Marine Geology, 2007, 245(1/4): 141−159.
    [60] Dissanayake P, Brown J, Karunarathna H. Impacts of storm chronology on the morphological changes of the formby beach and dune system, UK[J]. Natural Hazards and Earth System Sciences, 2015, 15(7): 1533−1543. doi: 10.5194/nhess-15-1533-2015
    [61] 戴志军, 陈子燊, 李春初. 岬间海滩剖面短期变化的动力作用分析[J]. 海洋科学, 2001, 25(11): 38−41. doi: 10.3969/j.issn.1000-3096.2001.11.011

    Dai Zhijun, Chen Zishen, Li Chunchu. Analysis of dynamical actions on the process of beach profile between headlands over a short time[J]. Marine Sciences, 2001, 25(11): 38−41. doi: 10.3969/j.issn.1000-3096.2001.11.011
    [62] 蔡锋, 苏贤泽, 曹惠美, 等. 华南砂质海滩的动力地貌分析[J]. 海洋学报, 2005, 27(2): 106−114. doi: 10.3321/j.issn:0253-4193.2005.02.013

    Cai Feng, Su Xianze, Cao Huimei, et al. Analysis on morphodynamics of sandy beaches in South China[J]. Haiyang Xuebao, 2005, 27(2): 106−114. doi: 10.3321/j.issn:0253-4193.2005.02.013
    [63] Sallenger A H Jr. Storm impact scale for barrier islands[J]. Journal of Coastal Research, 2000, 16(3): 890−895.
    [64] Reading H G. Sedimentary Environments and Facies[M]. 2nd ed. Oxford: Blackwell Scientific Publications, 1986: 615.
    [65] Zhou Liang, Yang Yang, Wang Zhanghua, et al. Investigating ENSO and WPWP modulated typhoon variability in the South China Sea during the mid-late Holocene using sedimentological evidence from southeastern Hainan Island, China[J]. Marine Geology, 2019, 416: 105987. doi: 10.1016/j.margeo.2019.105987
    [66] Sakuna-Schwartz D, Feldens P, Schwarzer K, et al. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash-flood deposits[J]. Natural Hazards and Earth System Sciences, 2015, 15(6): 1181−1199. doi: 10.5194/nhess-15-1181-2015
    [67] Cunningham A C, Bakker M A J, Van Heteren S, et al. Extracting storm-surge data from coastal dunes for improved assessment of flood risk[J]. Geology, 2011, 39(11): 1063−1066. doi: 10.1130/G32244.1
    [68] 王建, 柏春广, 徐永辉. 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J]. 沉积学报, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014

    Wang Jian, Bo Chunguang, Xu Yonghui. Mechanism of silt-mud couplet of mud tidal flat and discrimination criteria of storm surge sedimentation in the middle Jiangsu Province[J]. Acta Sedimentologica Sinica, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014
    [69] Liu K B. Paleotempestology[M]//Elias S C. Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2006.
    [70] Rankey E C, Enos P, Steffen K, et al. Lack of impact of hurricane Michelle on tidal flats, Andros island, Bahamas: integrated remote sensing and field observations[J]. Journal of Sedimentary Research, 2004, 74(5): 654−661. doi: 10.1306/021704740654
    [71] 赵秧秧, 高抒. 台风风暴潮影响下潮滩沉积动力模拟初探——以江苏如东海岸为例[J]. 沉积学报, 2015, 33(1): 79−90.

    Zhao Yangyang, Gao Shu. Simulation of tidal flat sedimentation in response to typhoon-induced storm surges: a case study from Rudong coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79−90.
    [72] Harms J C, Southard J B, Spearing D R, et al. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequence[M]. Texas: Society of Economic Paleontologists and Mineralogists, 1975: 161.
    [73] Lambert W J, Aharon P, Rodriguez A B. Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: a case study of Lake Shelby, Alabama (USA)[J]. Journal of Paleolimnology, 2008, 39(1): 117−131. doi: 10.1007/s10933-007-9101-6
    [74] Williams H F L. 600-year sedimentary archive of hurricane strikes in a prograding beach ridge plain, southwestern Louisiana[J]. Marine Geology, 2013, 336: 170−183. doi: 10.1016/j.margeo.2012.12.005
    [75] Wallace D J, Woodruff J D, Anderson J B, et al. Palaeohurricane reconstructions from sedimentary archives along the Gulf of Mexico, Caribbean Sea and western North Atlantic Ocean margins[J]. Geological Society, London, Special Publications, 2014, 388(1): 481−501. doi: 10.1144/SP388.12
    [76] Zhao Yifei, Zou Xinqing, Gao Jianhua, et al. Recent sedimentary record of storms and floods within the estuarine-inner shelf region of the East China Sea[J]. The Holocene, 2016, 27(3): 439−449.
    [77] Smith T A, Chen S, Campbell T, et al. Ocean–wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004)[J]. Ocean Modelling, 2013, 69(2): 181−194.
    [78] 田元, 范德江, 张喜林, 等. 东海内陆架沉积物敏感粒级构成及其地质意义[J]. 海洋与湖沼, 2016, 47(2): 30−37.

    Tian Yuan, Fan Dejiang, Zhang Xilin. Sensitive grain size components and their geological implication in the inner shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2016, 47(2): 30−37.
    [79] Jia Jianjun, Gao Jianhua, Cai Tinglu, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2−16. doi: 10.1016/j.margeo.2018.04.005
    [80] Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003
    [81] Xiao Shangbin, Li Anchun, Jiang Fuqing, et al. Recent 2000-year geological records of mud in the inner shelf of the East China Sea and their climatic implications[J]. Chinese Science Bulletin, 2005, 50(5): 466−471. doi: 10.1007/BF02897464
    [82] Li Yuhai, Wang Aijun, Qiao Lei, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China[J]. Continental Shelf Research, 2012, 37: 92−100. doi: 10.1016/j.csr.2012.02.020
    [83] Gao Shu, Liu Yunling, Yang Yang, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf[J]. Journal of Asian Earth Sciences, 2015, 114: 562−573. doi: 10.1016/j.jseaes.2015.07.024
    [84] 任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984, 3(1): 40−52.

    Ren Meie, Zhang Renshun, Yang Juhai. Sedimentation on tidal mud flat in Wanggang area, Jiangsu Province, China[J]. Marine Science Bulletin, 1984, 3(1): 40−52.
    [85] 许世远, 邵虚生, 陈中原, 等. 长江三角洲风暴沉积系列研究[J]. 中国科学: B辑, 1990, 33(10): 1242−1250.

    Xu Shiyuan, Shao Xusheng, Chen Zhongyuan, et al. Storm deposits in the Changjiang delta[J]. Science in China: Series B, 1990, 33(10): 1242−1250.
    [86] Shao X S, Yan Q S, Xu S Y, et al. Storm deposits in the coastal region of Shanghai, the Yangtze Delta, China[J]. Geologie en Mijnbouw, 1991, 70: 45−58.
    [87] 张国栋, 王益友, 朱静昌, 等. 现代滨岸风暴沉积—以舟山普陀岛、朱家尖岛为例[J]. 沉积学报, 1987, 5(2): 17−28.

    Zhang Guodong, Wang Yiyou, Zhu Jingchang, et al. Modern coastal storm deposits of Putuo Island and Zhujiajian Island, Zhoushan[J]. Acta Sedimentologica Sinica, 1987, 5(2): 17−28.
    [88] 陈卫跃. 潮滩泥沙输移及沉积动力环境—以杭州湾北岸、长江口南岸部分潮滩为例[J]. 海洋学报, 1991, 13(6): 813−821.

    Chen Weiyue. Sediment dynamics and transport in tidal flat: A case study of the north Hangzhou Bay and south Yangtze River estuary[J]. Haiyang Xuebao, 1991, 13(6): 813−821.
    [89] Ren Meie, Zhang Renshun, Yang Juhai. Effect of typhoon no. 8114 on coastal morphology and sedimentation of Jiangsu Province, People’s Republic of China[J]. Journal of Coastal Research, 1985, 1(1): 21−28.
    [90] Gao Shu. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China[J]. Continental Shelf Research, 2009, 29(16): 1927−1936. doi: 10.1016/j.csr.2008.12.010
    [91] Liu K B. Paleotempestology: Principles, methods, and examples from gulf coast lake-sediments[M]//Murnane R J, Liu K B. Hurricanes and Typhoons: Past, Present, and Future. New York: Columbia University Press, 2004: 13-57.
    [92] 黄光庆, 严维枢. 有孔虫指示的珠江口全新世风暴潮沉积信息[J]. 科学通报, 1997, 42(4): 423−426. doi: 10.3321/j.issn:0023-074X.1997.04.027

    Huang Guangqing, Yan Weishu. Holocene storm deposits information of the Pearl estuary indicated by foraminifera[J]. Chinese Science Bulletin, 1997, 42(4): 423−426. doi: 10.3321/j.issn:0023-074X.1997.04.027
    [93] Collins E S, Scott D B, Gayes P T. Hurricane records on the South Carolina coast: Can they be detected in the sediment record?[J]. Quaternary International, 1999, 56(1): 15−26. doi: 10.1016/S1040-6182(98)00013-5
    [94] Nott J. Palaeotempestology: the study of prehistoric tropical cyclones—a review and implications for hazard assessment[J]. Environment International, 2004, 30(3): 433−447. doi: 10.1016/j.envint.2003.09.010
    [95] Katsuki K, Yang D Y, Seto K, et al. Factors controlling typhoons and storm rain on the Korean Peninsula during the Little Ice Age[J]. Journal of Paleolimnology, 2016, 55(1): 35−48. doi: 10.1007/s10933-015-9861-3
    [96] Chen H F, Wen S Y, Song Senrong, et al. Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene[J]. Journal of Quaternary Science, 2012, 27(9): 964−972. doi: 10.1002/jqs.2590
    [97] Donnelly C, Kraus N, Larson M. State of knowledge on measurement and modeling of coastal overwash[J]. Journal of Coastal Research, 2006, 22(4): 965−991.
    [98] King C A M. Beaches and Coasts[M]. 2nd ed. London: Palgrave Macmillan, 1972: 570.
    [99] Shaw J, You Yao, Mohrig D, et al. Tracking hurricane-generated storm surge with washover fan stratigraphy[J]. Geology, 2015, 43(2): 127−130. doi: 10.1130/G36460.1
    [100] Phantuwongraj S, Choowong M, Nanayama F, et al. Coastal geomorphic conditions and styles of storm surge washover deposits from Southern Thailand[J]. Geomorphology, 2013, 192: 43−58. doi: 10.1016/j.geomorph.2013.03.016
    [101] Wang Ping, Horwitz M H. Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes[J]. Sedimentology, 2007, 54(3): 545−564. doi: 10.1111/j.1365-3091.2006.00848.x
    [102] 杨保明, 高抒, 周亮, 等. 海南岛东南部海岸砂丘风暴冲越沉积记录[J]. 沉积学报, 2017, 35(6): 1133−1143.

    Yang Baoming, Gao Shu, Zhou Liang, et al. A coastal dune overwash record of typhoon storm events from southeastern Hainan Island[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1133−1143.
    [103] Nott J F. Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause—tsunami or tropical cyclone[J]. Marine Geology, 1997, 141(1/4): 193−207.
    [104] Frohlich C, Hornbach M J, Taylor F W, et al. Huge erratic boulders in Tonga deposited by a prehistoric tsunami[J]. Geology, 2009, 37(2): 131−134. doi: 10.1130/G25277A.1
    [105] Kennedy A B, Mori N, Yasuda T, et al. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan[J]. Marine Geology, 2017, 383: 65−77. doi: 10.1016/j.margeo.2016.11.004
    [106] Scheffers A. Tsunami boulder deposits[M]//Shiki T, Tsuji Y, Yamazaki T, et al. Tsunamiites. Features and Implications. Amsterdam: Elsevier, 2008: 299-317.
    [107] Goto K, Kawana T, Imamura F. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan[J]. Earth-Science Reviews, 2010, 102(1/2): 77−99.
    [108] Dawson A G, Stewart I, Morton R A, et al. Reply to comments by Kelletat (2008) Comments to Dawson, A. G. and Stewart, I. Tsunami deposits in the geological record[J]. Sedimentary Geology, 2008, 211(3/4): 92−93.
    [109] Goto K, Miyagi K, Kawana T, et al. Emplacement and movement of boulders by known storm waves—field evidence from the Okinawa Islands, Japan[J]. Marine Geology, 2011, 283(1/4): 66−78.
    [110] Nandasena N A K, Paris R, Tanaka N. Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)[J]. Marine Geology, 2011, 281(1/4): 70−84.
    [111] Hongo C, Kurihara H, Golbuu Y. Coral boulders on Melekeok reef in the Palau Islands: An indicator of wave activity associated with tropical cyclones[J]. Marine Geology, 2018, 399: 14−22. doi: 10.1016/j.margeo.2018.02.004
    [112] Mastronuzzi G, Pignatelli C. The boulder berm of Punta Saguerra (Taranto, Italy): a morphological imprint of the Rossano Calabro tsunami of April 24, 1836?[J]. Earth, Planets and Space, 2012, 64(10): 829−842. doi: 10.5047/eps.2011.08.018
    [113] Hoffmeister D, Ntageretzis K, Aasen H, et al. 3D model-based estimations of volume and mass of high-energy dislocated boulders in coastal areas of Greece by terrestrial laser scanning[J]. Zeitschrift für Geomorphologie, Supplementary Issues, 2014, 58(3): 115−135. doi: 10.1127/0372-8854/2013/S-00126
    [114] Telling J, Lyda A, Hartzell P, et al. Review of Earth science research using terrestrial laser scanning[J]. Earth-Science Reviews, 2017, 169: 35−68. doi: 10.1016/j.earscirev.2017.04.007
    [115] Roig-Munar F X, Rodríguez-Perea A, Vilaplana J M, et al. Tsunami boulders in Majorca Island (Balearic Islands, Spain)[J]. Geomorphology, 2019, 334: 76−90. doi: 10.1016/j.geomorph.2019.02.012
    [116] Kennedy D M, Woods J L D, Naylor L A, et al. Intertidal boulder-based wave hindcasting can underestimate wave size: Evidence from Yorkshire, UK[J]. Marine Geology, 2019, 411: 98−106. doi: 10.1016/j.margeo.2019.02.002
    [117] Hastewell L J, Schaefer M, Bray M, et al. Intertidal boulder transport: A proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility[J]. Earth Surface Processes and Landforms, 2019, 44(3): 681−698. doi: 10.1002/esp.4523
    [118] Gandhi D, Chavare K A, Prizomwala S P, et al. Testing the numerical models for boulder transport through high energy marine wave event: An example from southern Saurashtra, western India[J]. Quaternary International, 2017, 444: 209−216. doi: 10.1016/j.quaint.2016.05.021
    [119] Herterich J G, Cox R, Dias F. How does wave impact generate large boulders? Modelling hydraulic fracture of cliffs and shore platforms[J]. Marine Geology, 2018, 399: 34−46. doi: 10.1016/j.margeo.2018.01.003
    [120] 徐笑梅, 高抒, 周亮, 等. 海南岛东北部海岸极端波浪事件沉积记录[J]. 海洋学报, 2019, 41(6): 48−63. doi: 10.3969/j.issn.0253-4193.2019.06.005

    Xu Xiaomei, Gao Shu, Zhou Liang, et al. Sedimentary records of extreme wave events on the northeastern Hainan Island coast, southern China[J]. Haiyang Xuebao, 2019, 41(6): 48−63. doi: 10.3969/j.issn.0253-4193.2019.06.005
    [121] Wheatcroft R A, Drake D E. Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation[J]. Marine Geology, 2003, 199(1/2): 123−137.
    [122] Hippensteel S P. Preservation potential of storm deposits in South Carolina back-barrier marshes[J]. Journal of Coastal Research, 2008, 243: 594−601. doi: 10.2112/05-0624.1
    [123] Hart M. Evaluating the preservation of hurricane deposits in Florida coastal sediments[D]. Gainesville: University of Florida, 2003.
    [124] Liu K B, Li C, Bianchette T A, et al. Storm deposition in a coastal backbarrier lake in Louisiana caused by Hurricanes Gustav and Ike[J]. Journal of Coastal Research, 2011, 64: 1866−1870.
    [125] Tamura T. Beach ridges and prograded beach deposits as palaeoenvironment records[J]. Earth-Science Reviews, 2012, 114(3/4): 279−297.
    [126] Toomey M, Cantwell M, Colman S, et al. The mighty Susquehanna—extreme floods in Eastern North America during the past two millennia[J]. Geophysical Research Letters, 2019, 46(6): 3398−3407. doi: 10.1029/2018GL080890
    [127] Kreisa R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia[J]. Journal of Sedimentary Research, 1981, 51(3): 823−848.
    [128] 严钦尚. 论滨岸和浅海的风暴沉积[J]. 海洋与湖沼, 1984, 15(1): 14−20.

    Yan Qinshang. Overview of the storm-generated deposits on nearshore zone and open shelf[J]. Oceanologia et Limnologia Sinica, 1984, 15(1): 14−20.
    [129] Liu K B, Fearn M L. Lake-sediment record of late Holocene hurricane activities from coastal Alabama[J]. Geology, 1993, 21(9): 793−796. doi: 10.1130/0091-7613(1993)021<0793:LSROLH>2.3.CO;2
    [130] Bregy J C, Wallace D J, Minzoni R T, et al. 2500-year paleotempestological record of intense storms for the northern Gulf of Mexico, United States[J]. Marine Geology, 2018, 396: 26−42. doi: 10.1016/j.margeo.2017.09.009
    [131] Yu Kefu, Zhao Jianxin, Collerson K D, et al. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 89−100. doi: 10.1016/j.palaeo.2004.04.002
    [132] Cox R, Jahn K L, Watkins O G, et al. Extraordinary boulder transport by storm waves(West of Ireland, Winter 2013-2014), and criteria for analysing coastal boulder deposits[J]. Earth-Science Reviews, 2018, 177: 623−636. doi: 10.1016/j.earscirev.2017.12.014
    [133] 王为, 李平日, 谭惠忠, 等. 南海北部长湾风暴潮贝壳堤的沉积特征及发育模式[J]. 地质学报, 2010, 84(12): 1829−1838.

    Wang Wei, Li Pingri, Tan Huizhong, et al. Depositional characteristics and development model of a chenier built up by storm surges on the coast of the northern South China Sea[J]. Acta Geologica Sinca, 2010, 84(12): 1829−1838.
    [134] Nott J F, Forsyth A, Rhodes E, et al. The origin of centennial-to millennial-scale chronological gaps in storm emplaced beach ridge plains[J]. Marine Geology, 2015, 367: 83−93. doi: 10.1016/j.margeo.2015.05.011
    [135] Allison M A, Sheremet A, Goñi M A, et al. Storm layer deposition on the Mississippi–Atchafalaya subaqueous delta generated by Hurricane Lili in 2002[J]. Continental Shelf Research, 2005, 25(18): 2213−2232. doi: 10.1016/j.csr.2005.08.023
    [136] Wang Jian, Bai Chunguang, Xu Yonghui, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China[J]. Journal of Coastal Research, 2010, 26(5): 976−981.
    [137] Hamblin A P, Duke W L, Walker R G. Hummocky cross-stratification—indicator of storm-dominated shallow-marine environments[J]. AAPG Bulletin, 1979, 63(3): 460−461.
    [138] Hong I, Pilarczyk J E, Horton B P, et al. Sedimentological characteristics of the 2015 Tropical Cyclone Pam overwash sediments from Vanuatu, South Pacific[J]. Marine Geology, 2018, 396: 205−214. doi: 10.1016/j.margeo.2017.05.011
    [139] Nott J F. Intensity of prehistoric tropical cyclones[J]. Journal of Geophysical Research, 2003, 108(D7): 4212. doi: 10.1029/2002JD002726
    [140] 王为, 谭惠忠. 贝壳堤的形成与风暴沉积——以广东台山长湾贝壳堤为例[J]. 热带地理, 2003, 23(3): 209−213. doi: 10.3969/j.issn.1001-5221.2003.03.003

    Wang Wei, Tan Huizhong. Formation of a chenier and storm deposits—A case study of the coast of south China[J]. Tropical Geography, 2003, 23(3): 209−213. doi: 10.3969/j.issn.1001-5221.2003.03.003
    [141] 王强, 袁桂邦, 张熟, 等. 渤海湾西岸贝壳堤堆积与海陆相互作用[J]. 第四纪研究, 2007, 27(5): 775−786. doi: 10.3321/j.issn:1001-7410.2007.05.019

    Wang Qiang, Yuan Guibang, Zhang Shu, et al. Shelly ridge accumulation and sea-land interaction on the west coast of the Bohai Bay[J]. Quaternary Sciences, 2007, 27(5): 775−786. doi: 10.3321/j.issn:1001-7410.2007.05.019
    [142] Goto K, Okada K, Imamura F. Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan[J]. Marine Geology, 2009, 262(1/4): 14−24.
    [143] Terry J P, Oliver G J H, Friess D A. Ancient high-energy storm boulder deposits on Ko Samui, Thailand, and their significance for identifying coastal hazard risk[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 454: 282−293. doi: 10.1016/j.palaeo.2016.04.046
    [144] Schwartz R K. Bedform and stratification characteristics of some modern small-scale washover sand bodies[J]. Sedimentology, 1982, 29(6): 835−849. doi: 10.1111/j.1365-3091.1982.tb00087.x
    [145] 李平日, 黄光庆, 谭惠忠, 等. 珠江口地区风暴潮沉积的研究[M]. 广州: 广东科技出版社, 2002: 153.

    Li Pingri, Huang Guangqing, Tan Huizhong, et al. Storm Sedimentation in the Pearl River Estuary[M]. Guangzhou: Guangdong Science &Technology Press, 2002: 153.
    [146] 高抒. 海洋沉积动力学研究导引[M]. 南京: 南京大学出版社, 2013: 398.

    Gao Shu. Introduction to Marine Sedimentary Dynamics[M]. Nanjing: Nanjing University Press, 2013: 398.
    [147] Nanayama F, Shigeno K, Satake K, et al. Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan[J]. Sedimentary Geology, 2000, 135(1/4): 255−264.
    [148] Zhang Erfeng, Gao Shu, Savenije H H G, et al. Saline water intrusion in relation to strong winds during winter cold outbreaks: North Branch of the Yangtze Estuary[J]. Journal of Hydrology, 2019, 574: 1099−1109. doi: 10.1016/j.jhydrol.2019.04.096
    [149] Fan Dejiang, Qi Hongyan, Sun Xiaoxia, et al. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from high-resolution biogenic silica and sensitive grain-size records[J]. Continental Shelf Research, 2011, 31(2): 129−137. doi: 10.1016/j.csr.2010.12.001
    [150] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
    [151] Horowitz A J, Elrick K A, Smith J J, et al. The effects of hurricane Irene and tropical storm Lee on the bed sediment geochemistry of U. S. Atlantic coastal rivers[J]. Hydrological Processes, 2014, 28(3): 1250−1259. doi: 10.1002/hyp.9635
    [152] Morton R A, Gelfenbaum G, Jaffe B E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples[J]. Sedimentary Geology, 2007, 200(3/4): 184−207.
    [153] Yue Yuanfu, Yu Kefu, Tao Shichen, et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 521: 57−71. doi: 10.1016/j.palaeo.2019.02.009
    [154] Kortekaas S, Dawson A G. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal[J]. Sedimentary Geology, 2007, 200(3/4): 208−221.
    [155] Phantuwongraj S, Choowong M. Tsunamis versus storm deposits from Thailand[J]. Natural Hazards, 2012, 63(1): 31−50. doi: 10.1007/s11069-011-9717-8
    [156] Sun Liguang, Zhou Xin, Huang Wen, et al. Preliminary evidence for a 1 000-year-old tsunami in the South China Sea[J]. Scientific Reports, 2013, 3: 1655. doi: 10.1038/srep01655
    [157] 杨文卿, 孙立广, 杨仲康, 等. 南澳宋城: 被海啸毁灭的古文明遗址[J]. 科学通报, 2019, 64(1): 107−120.

    Yang Wenqing, Sun Liguang, Yang Zhongkang, et al. Nan’ao, an archaeological site of Song dynasty destroyed by tsunami[J]. Chinese Science Bulletin, 2019, 64(1): 107−120.
    [158] Goto K, Hashimoto K, Sugawara D, et al. Spatial thickness variability of the 2011 Tohoku-oki tsunami deposits along the coastline of Sendai Bay[J]. Marine Geology, 2014, 358: 38−48. doi: 10.1016/j.margeo.2013.12.015
    [159] Chagué-Goff C, Szczuciński W, Shinozaki T. Applications of geochemistry in tsunami research: a review[J]. Earth-Science Reviews, 2017, 165: 203−244. doi: 10.1016/j.earscirev.2016.12.003
    [160] Somboonna N, Wilantho A, Jankaew K, et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials[J]. PLoS One, 2014, 9(4): e94236. doi: 10.1371/journal.pone.0094236
    [161] Rubin C M, Horton B P, Sieh K, et al. Highly variable recurrence of tsunamis in the 7400 years before the 2004 Indian Ocean tsunami[J]. Nature Communications, 2017, 8: 16019. doi: 10.1038/ncomms16019
    [162] Rydgren K, Bondevik S. Moss growth patterns and timing of human exposure to a Mesolithic tsunami in the North Atlantic[J]. Geology, 2015, 43(2): 111−114. doi: 10.1130/G36278.1
    [163] Nandasena N A K, Tanaka N, Sasaki Y, et al. Boulder transport by the 2011 Great East Japan tsunami: Comprehensive field observations and whither model predictions?[J]. Marine Geology, 2013, 346: 292−309. doi: 10.1016/j.margeo.2013.09.015
    [164] Liu K B, Fearn M L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records[J]. Quaternary Research, 2000, 54(2): 238−245. doi: 10.1006/qres.2000.2166
    [165] Elsner J B, Jagger T H, Liu K B. Comparison of hurricane return levels using historical and geological records[J]. Journal of Applied Meteorology and Climatology, 2008, 47(2): 368−374. doi: 10.1175/2007JAMC1692.1
    [166] Nott J F, Forsyth A. Punctuated global tropical cyclone activity over the past 5000 years[J]. Geophysical Research Letters, 2012, 39(14): L14703.
    [167] Woodruff J D, Donnelly J P, Mohrig D, et al. Reconstructing relative flooding intensities responsible for hurricane-induced deposits from Laguna Playa Grande, Vieques, Puerto Rico[J]. Geology, 2008, 36(5): 391−394. doi: 10.1130/G24731A.1
    [168] Brandon C M, Woodruff J D, Donnelly J P, et al. How unique was Hurricane Sandy? Sedimentary reconstructions of extreme flooding from New York Harbor[J]. Scientific Reports, 2014, 4: 7366.
    [169] Stockdon H F, Holman R A, Howd P A, et al. Empirical parameterization of setup, swash, and runup[J]. Coastal Engineering, 2006, 53(7): 573−588. doi: 10.1016/j.coastaleng.2005.12.005
    [170] Brandon C M, Woodruff J D, Lane D, et al. Tropical cyclone wind speed constraints from resultant storm surge deposition: A 2500 year reconstruction of hurricane activity from St. Marks, FL[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2993−3008. doi: 10.1002/ggge.20217
    [171] Laigle L, Joseph P, De Marsily G, et al. 3-D process modelling of ancient storm-dominated deposits by an event-based approach: Application to Pleistocene-to-modern Gulf of Lions deposits[J]. Marine Geology, 2013, 335: 177−199. doi: 10.1016/j.margeo.2012.11.007
    [172] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268−294. doi: 10.1016/j.margeo.2014.03.021
    [173] Huang C S Y, Nakamura N. Local wave activity budgets of the wintertime Northern Hemisphere: Implication for the Pacific and Atlantic storm tracks[J]. Geophysical Research Letters, 2017, 44(11): 5673−5682. doi: 10.1002/2017GL073760
    [174] Stark, J, Smolders S, Meire P, et al. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: a modelling study for the Scheldt Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 138−155. doi: 10.1016/j.ecss.2017.09.004
    [175] Hu Kelin, Ding Pingxing, Wang Zhengbing, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China[J]. Journal of Marine Systems, 2009, 77(1/2): 114−136.
    [176] Hu Kelin, Chen Qin, Wang Hongqing, et al. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy[J]. Coastal Engineering, 2018, 132: 63−81. doi: 10.1016/j.coastaleng.2017.11.001
    [177] Goldenberg S B, Landsea C W, Mestas-Nuñez A M, et al. The recent increase in Atlantic hurricane activity: Causes and implications[J]. Science, 2001, 293(5529): 474−479. doi: 10.1126/science.1060040
    [178] Chan J C L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”[J]. Science, 2006, 311(5768): 1713.
    [179] Elsner J B, Kossin J P, Jagger T H. The increasing intensity of the strongest tropical cyclones[J]. Nature, 2008, 455(7209): 92−95. doi: 10.1038/nature07234
    [180] Sobel A H, Camargo S J, Hall T M, et al. Human influence on tropical cyclone intensity[J]. Science, 2016, 353(6296): 242−246. doi: 10.1126/science.aaf6574
    [181] Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10: 635. doi: 10.1038/s41467-019-08471-z
    [182] Emanuel K A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12219−12224. doi: 10.1073/pnas.1301293110
    [183] Bacmeister J T, Reed K A, Hannay C, et al. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model[J]. Climatic Change, 2018, 146(3/4): 547−560.
    [184] 王宏, 李建芬, 裴艳东, 等. 渤海湾西岸海岸带第四纪地质研究成果概述[J]. 地质调查与研究, 2011, 34(2): 81−97. doi: 10.3969/j.issn.1672-4135.2011.02.001

    Wang Hong, Li Jianfen, Pei Yandong, et al. Study of Quaternary geology on the west coast of Bohai Bay[J]. Geological Survey and Research, 2011, 34(2): 81−97. doi: 10.3969/j.issn.1672-4135.2011.02.001
    [185] Chen H F, Liu Y C, Chiang C W, et al. China's historical record when searching for tropical cyclones corresponding to Intertropical Convergence Zone(ITCZ) shifts over the past 2 kyr[J]. Climate of the Past, 2019, 15(1): 279−289. doi: 10.5194/cp-15-279-2019
    [186] Donnelly J P, Hawkes A D, Lane P, et al. Climate forcing of unprecedented intense‐hurricane activity in the last 2000 years[J]. Earth's Future, 2015, 3(2): 49−65. doi: 10.1002/2014EF000274
    [187] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162−165. doi: 10.1038/nature01194
    [188] 顾成林, 康建成, 闫国东, 等. 1951–2015年登陆中国热带气旋的时空变化特征及与ENSO的关系[J]. 灾害学, 2018, 33(4): 129−134, 140. doi: 10.3969/j.issn.1000-811X.2018.04.022

    Gu Chenglin, Kang Jiancheng, Yan Guodong, et al. Spatial and temporal variations of tropical cyclones landing on China in 1951–2015 and their relationship with ENSO[J]. Journal of Catastrophology, 2018, 33(4): 129−134, 140. doi: 10.3969/j.issn.1000-811X.2018.04.022
    [189] 王会军, 范可, 孙建奇, 等. 关于西太平洋台风气候变异和预测的若干研究进展[J]. 大气科学, 2007, 31(6): 1076−1081. doi: 10.3878/j.issn.1006-9895.2007.06.04

    Wang Huijun, Fan Ke, Sun Jianqi, et al. Some advances in the researches of the western north Pacific typhoon climate variability and prediction[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6): 1076−1081. doi: 10.3878/j.issn.1006-9895.2007.06.04
    [190] Tu J Y, Chou C, Chu P S. The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change[J]. Journal of Climate, 2009, 22(13): 3617−3628. doi: 10.1175/2009JCLI2411.1
  • 加载中
图(11)
计量
  • 文章访问数:  728
  • HTML全文浏览量:  102
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2019-07-30
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回