留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

70年来中国化学海洋学研究的主要进展

宋金明 王启栋 张润 陈建芳 陈敏 徐忠胜

宋金明,王启栋,张润,等. 70年来中国化学海洋学研究的主要进展[J]. 海洋学报,2019,41(10):65–80,doi:10.3969/j.issn.0253−4193.2019.10.004
引用本文: 宋金明,王启栋,张润,等. 70年来中国化学海洋学研究的主要进展[J]. 海洋学报,2019,41(10):65–80,doi:10.3969/j.issn.0253−4193. 2019.10.004
Song Jinming,Wang Qidong,Zhang Run, et al. Main progress on chemical oceanography in China over the past 70 years[J]. Haiyang Xuebao,2019, 41(10):65–80,doi:10.3969/j.issn.0253−4193.2019.10.004
Citation: Song Jinming,Wang Qidong,Zhang Run, et al. Main progress on chemical oceanography in China over the past 70 years[J]. Haiyang Xuebao,2019, 41(10):65–80,doi:10.3969/j.issn.0253−4193. 2019.10.004

70年来中国化学海洋学研究的主要进展

doi: 10.3969/j.issn.0253-4193.2019.10.004
基金项目: 中国科学院战略性先导科技专项(XDA23050501);国家基金委–山东省联合基金项目(U1606404)。
详细信息
    作者简介:

    宋金明(1964—),男,河北省枣强县人,研究员,主要从事化学海洋学研究。E-mail:jmsong@qdio.ac.cn

  • 中图分类号: P734

Main progress on chemical oceanography in China over the past 70 years

  • 摘要: 我国的海洋化学工作者通过70年来,特别是近30年来的化学海洋学研究,实现了我国与世界先进水平进入同步发展的快车道,其显著的特点是:(1)化学海洋学研究从元素地球化学分布系统转向了以揭示深层次海洋生物地球化学过程为核心的研究;(2)化学海洋学研究实现了多领域、多视点的综合交叉研究;(3)更加关注了人为影响与自然变化共同作用下的海洋生态环境变化研究,对近海和海岸带而言,更加注重从海陆统筹一体化角度探析化学物质的分布迁移特征。本文从生源要素的海洋生物地球化学过程、微/痕量元素与同位素的海洋化学研究、生物过程作用下的化学海洋学过程等角度,重点总结归纳和分析了30年来我国海洋化学研究的重要进展和发展状况,以期对化学海洋学的进一步研究提供借鉴和启迪。
  • 图  1  1982–2018年渤海溶解无机氮(DIN)浓度(实心圆)和溶解无机磷(DIP)浓度(空心圆)的变化[7]

    Fig.  1  Concentrations of DIN (solid circle) and DIP (hollow circle) from 1982 to 2018 in Bohai Sea[7]

    图  2  基于Ba-盐度指标的春、夏季东海陆架底层黑潮水所占比例[11]

    Fig.  2  The proportion of Kuroshio water in the bottom shelf of the East China Sea in spring and summer based on Ba-salinity index[11]

    图  3  表层海水及海–气界面中DMS的源–汇过程[18]

    Fig.  3  Sources and sinks processes of DMS in the sea microlayer and surface waters[18]

    表  1  渤海、黄海、东海、南海海气CO2通量

    Tab.  1  Sea-air CO2 fluxes in China coastal seas

    渤海黄海东海南海
    春季–3.40–9.20–59.28±9.6021.60±56.40
    夏季–5.80– 44.04±13.0811.40±12.36
    秋季51.108.0018.00±100.4435.40±12.60
    冬季–16.90–26.20–80.16±83.1616.80±21.36
    年际通量0.22±0.85–1.15±1.95– 6.92~–23.3013.86~33.60
      注:以碳计,季节通量单位为kg/(m2·d),年际通量单位为Tg/a;“–”表示吸收CO2。数据根据Jiao等[4]汇总整理。
    下载: 导出CSV

    表  2  渤海、黄海、东海、南海海水中的DIC、DOC以及POC

    Tab.  2  DIC、DOC and POC in China coastal seas

    水层渤海黄海东海南海
    DIC/μmol·kg–1表层2 100~2 2501 859~2 0921 832~2 0231 740~2 050
    底层2 168~2 7841 979~2 1852 000~2 1002 330~2 370
    DOC/mg·L–1表层1.36~4.021.04~3.520.54~1.880.66~1.02
    底层1.04~3.890.96~3.380.55~1.610.46~0.54
    POC/mg·L–1表层0.22~0.960.06~2.190.01~0.360.02~0.05
    底层0.21~1.570.08~9.190.01~2.49~0.01
      注:数据根据Jiao等[4]汇总整理。
    下载: 导出CSV

    表  3  渤海、黄海、东海、南海沉积物中的有机碳埋藏

    Tab.  3  Organic carbon burial in the sediments of marginal sea of China continental shelf

    碳埋藏参数渤海黄海东海南海北部陆架区
    埋藏速率
    /g·(m2·a)–1(以C计)
    15.312.514.714.1
    埋藏通量
    /Tg·a–1(以C计)
    2.004.757.404.80
    海源有机碳比例/%646474
      注:数据根据Jiao等[4]、Song等[6]和宋金明等[7]汇总整理。
    下载: 导出CSV

    表  4  黄海表层沉积物不同形态氮含量及其在总氮中所占的比例

    Tab.  4  Contents of various forms of nitrogen in surface sediments of the Yellow Sea and their proportion to the total nitrogen

    无机氮有机氮总氮
    含量/mg·kg–1155.2~340.6 (199.8±41.0)289.3~889.5 (638.7±116.6)582.2~1 059.5 (838.4±107.6)
    比例14.9%~50.3 %(24.4%±7.3%)49.7%~85.1 %(75.6%±7.3%)
      注:括号内数据为平均值±标准差;数据源于宋金明等[7]
    下载: 导出CSV

    表  5  我国近海大气营养盐干湿沉降通量

    Tab.  5  Dry and wet deposition fluxes of atmospheric nutrients in China coastal seas

    区域年份类型营养元素通量/mmol·(m–2·a–1)
    NH4-NNO3-NDIPDONDOPDSi
    胶州湾2015–201629.429.90.09915.40.1658.48
    湿92.854.50.27447.50.4481.73
    胶州湾2009–201050.667.90.6046.60.160.60
    湿28.318.80.072.65
    黄海2009–201026.635.00.2440.50.490.32
    湿37.530.60.792.15
    东海2003–20046.9012.40.180.30
    湿50.431.50.1522.90.072.30
      注:数据源于宋金明等[7]和Xing等[10]
    下载: 导出CSV

    表  6  黑潮输入东海的生源要素通量

    Tab.  6  The influxes of biogenic elements from the Kuroshio to the East China Sea

    季节黑潮水层颗粒态生源要素通量/kmol·s–1溶解态无机生源要素通量/kmol·s–1
    POCPINPONPIPPOPDIC${\rm {NO}}_3^{-} $${\rm {PO}}_4^{3-} $${\rm {SiO}}_3^{2-} $
    春季表层水2.430.0330.3860.0170.0151527.11.0440.1121.99
    次表层水1.290.0320.1220.0100.0101583.75.3820.3665.36
    中层水0.250.0140.0280.0040.003587.98.1240.57318.00
    总计3.960.0780.5360.0310.0283698.614.551.05125.40
    秋季表层水3.360.0610.5270.0230.0232023.00.200.0290.60
    次表层水0.580.0190.0970.0080.006796.701.690.1181.82
    中层水0.210.0060.0190.0020.001301.303.9030.2848.66
    总计4.150.0860.6430.0330.0303121.05.7930.43111.10
    年均4.060.0820.5900.0320.0293409.810.170.97118.25
      注:数据根据宋金明等[12]整理。
    下载: 导出CSV

    表  7  长江口外海域低氧区最低氧含量和面积的变化

    Tab.  7  Change of minimum oxygen content and anoxic areas off the Changjiang Estuary

    调查时间1959年8月1988年8月1998年8月1999年8月2003年9月2006年8月2015年9月
    最低氧含量/mg·L–10.341.961.441.00.80.871.92
    缺氧区面积/km21 600<30060013 70020 00015 40014 800
      注:数据来自于宋金明等[7]和Chi等[26]
    下载: 导出CSV
  • [1] 宋金明. 中国的海洋化学[M]. 北京: 海洋出版社, 2000: 1–210.

    Song Jinming. Marine Chemistry in China[M]. Beijing: China Ocean Press, 2000: 1–210.
    [2] 顾宏堪. 渤黄东海海洋化学[M]. 北京: 科学出版社, 1991: 1–500.

    Gu Hongkan. Marine Chemistry in the Bohai Sea, the Yellow Sea and the East China Sea[M]. Beijing: Science Press, 1991: 1–500.
    [3] 韩舞鹰. 南海海洋化学[M]. 北京: 科学出版社, 1998: 1-289.

    Han Wuying. Marine Chemistry in the South China Sea[M]. Beijing: Science Press, 1998: 1–289.
    [4] Jiao Nianzhi, Liang Yantao, Zhang Yongyu, et al. Carbon pools and fluxes in the China seas and adjacent oceans[J]. Science China: Earth Sciences, 2018, 61(11): 1535−1563. doi: 10.1007/s11430-018-9190-x
    [5] Chen C T A, Wang Shulun, Chou W C, et al. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea[J]. Marine Chemistry, 2006, 101(3/4): 277−305.
    [6] Song Jinming, Qu Baoxiao, Li Xuegang, et al. Carbon sinks/sources in the Yellow and East China Seas—Air-sea interface exchange, dissolution in seawater, and burial in sediments[J]. Science China: Earth Sciences, 2018, 61(11): 1583−1593. doi: 10.1007/s11430-017-9213-6
    [7] 宋金明, 李学刚, 袁华茂, 等. 渤黄东海生源要素的生物地球化学[M]. 北京: 科学出版社, 2019.

    Song Jinming, Li Xuegang, Yuan Huamao, et al. Biogeochemistry of Biogenic Elements in the Bohai, Yellow and East China Seas[M]. Beijing: Science Press, 2019.
    [8] Dai Minhan, Cao Zhimian, Guo Xianghui, et al. Why are some marginal seas sources of atmospheric CO2?[J]. Geophysical Research Letters, 2013, 40(10): 2154−2158. doi: 10.1002/grl.50390
    [9] Liu Sumei, Altabet M A, Zhao Liang, et al. Tracing nitrogen biogeochemistry during the beginning of a spring phytoplankton bloom in the Yellow Sea using coupled nitrate nitrogen and oxygen isotope ratios[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(10): 2490−2508. doi: 10.1002/2016JG003752
    [10] Xing Jianwei, Song Jinming, Yuan Huamao, et al. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China[J]. Science of the Total Environment, 2017, 576: 617−627. doi: 10.1016/j.scitotenv.2016.10.134
    [11] Liu Wei, Song Jinming, Yuan Huamao, et al. Dissolved barium as a tracer of Kuroshio incursion in the Kuroshio region east of Taiwan Island and the adjacent East China Sea[J]. Science China: Earth Sciences, 2017, 60(7): 1356−1367. doi: 10.1007/s11430-016-9039-7
    [12] 宋金明, 袁华茂. 黑潮与邻近东海生源要素的交换及其生态环境效应[J]. 海洋与湖沼, 2017, 48(6): 1169−1177. doi: 10.11693/hyhz20170900234

    Song Jinming, Yuan Huamao. Exchange and ecological effects of biogenic elements between Kuroshio and adjacent East China Sea[J]. Oceanologia et Limnnologia Sinica, 2017, 48(6): 1169−1177. doi: 10.11693/hyhz20170900234
    [13] 赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报, 2017, 47(9): 70−76.

    Zhao Meixun, Ding Yang, Yu Meng. Sources of sedimentary organic matter in China marginal sea surface sediments and implications of carbon sink[J]. Periodical of Ocean University of China, 2017, 47(9): 70−76.
    [14] Ren Chengzhe, Yuan Huamao, Song Jinming, et al. Amino sugars as indicator of organic matters source and diagenesis in the surface sediments of the East China Sea[J]. Ecological Indicators, 2019, 97: 111−119. doi: 10.1016/j.ecolind.2018.10.011
    [15] 周卜, 袁华茂, 宋金明, 等. 胶州湾沉积物中氨基酸对有机质降解及细菌源贡献的指示作用解析[J]. 海洋学报, 2018, 40(8): 29−41. doi: 10.3969/j.issn.0253-4193.2018.08.004

    Zhou Bu, Yuan Huamao, Song Jinming, et al. Indications of amino acids for the degradation of organic matter and bacterial sources in sediments of the Jiaozhou Bay[J]. Haiyang Xuebao, 2018, 40(8): 29−41. doi: 10.3969/j.issn.0253-4193.2018.08.004
    [16] Zhao Zongshan, Cao Yali, Fan Ying, et al. Ladderane records over the last century in the East China Sea: Proxies for anammox and eutrophication changes[J]. Water Research, 2019, 156: 297−304. doi: 10.1016/j.watres.2019.03.046
    [17] Li Dawei, Zhao Meixun, Tian Jun. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr[J]. Quaternary Science Reviews, 2017, 172: 72−82. doi: 10.1016/j.quascirev.2017.08.005
    [18] 杨桂朋, 张洪海. 海洋中生源活性气体的来源与迁移转化[J]. 海洋学报, 2018, 40(10): 14−21. doi: 10.3969/j.issn.0253-4193.2018.10.002

    Yang Guipeng, Zhang Honghai. Sources and transformation processes of biogenic active gases in the ocean[J]. Haiyang Xuebao, 2018, 40(10): 14−21. doi: 10.3969/j.issn.0253-4193.2018.10.002
    [19] Curson A R, Liu Ji, Martínez A B, et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process[J]. Nature Microbiology, 2017, 2: 17009. doi: 10.1038/nmicrobiol.2017.9
    [20] Zhai Xing, Zhang Honghai, Yang Guipeng, et al. Distribution and sea-air fluxes of biogenic gases and relationships with phytoplankton and nutrients in the central basin of the South China Sea during summer[J]. Marine Chemistry, 2018, 200: 33−44. doi: 10.1016/j.marchem.2018.01.009
    [21] He Zhen, Liu Qiulin, Zhang Yingjie, et al. Distribution and sea-to-air fluxes of volatile halocarbons in the Bohai Sea and North Yellow Sea during spring[J]. Science of the Total Environment, 2017, 584–585: 546−553. doi: 10.1016/j.scitotenv.2017.01.065
    [22] Zhai Weidong, Zhao Huade, Zheng Nan, et al. Coastal acidification in summer bottom oxygen-depleted waters in northwestern-northern Bohai Sea from June to August in 2011[J]. Chinese Science Bulletin, 2012, 57(9): 1062−1068. doi: 10.1007/s11434-011-4949-2
    [23] Zhai Weidong. Exploring seasonal acidification in the Yellow Sea[J]. Science China: Earth Sciences, 2017, 61(6): 647−658.
    [24] Shi Dalin, Xu Yan, Hopkinson B M, et al. Effect of ocean acidification on iron availability to marine phytoplankton[J]. Science, 2010, 327(5966): 676−679. doi: 10.1126/science.1183517
    [25] Jin Peng, Wang Tifeng, Liu Nana, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels[J]. Nature Communication, 2015, 6: 8714. doi: 10.1038/ncomms9714
    [26] Chi Lianbao, Song Xiuxian, Yuan Yongquan, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, 125(1/2): 440−450.
    [27] Zuo Jiulong, Song Jinming, Yuan Huamao, et al. Impact of Kuroshio on the dissolved oxygen in the East China Sea region[J]. Journal of Oceanology and Limnology, 2019, 37(2): 513−524. doi: 10.1007/s00343-019-7389-5
    [28] Zhu Xunchi, Zhang Ruifeng, Wu Ying, et al. The remobilization and removal of Fe in estuary—A case study in the Changjiang Estuary, China[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2539−2553. doi: 10.1002/2017JC013671
    [29] Chen Min, Huang Yipu, Jin Mingming, et al. The sources of the upper and lower halocline water in the Canada Basin derived from isotopic tracers[J]. Science in China Series D: Earth Sciences, 2003, 46(6): 625−639. doi: 10.1007/BF02984540
    [30] Zhang Run, Zheng Minfang, Chen Min, et al. An isotopic perspective on the correlation of surface ocean carbon dynamics and sea ice melting in Prydz Bay (Antarctica) during austral summer[J]. Deep-Sea Research I: Oceanographic Research Papers, 2014, 83: 24−33. doi: 10.1016/j.dsr.2013.08.006
    [31] Chen Min, Ma Qiang, Guo Laodong, et al. Importance of lateral transport processes to 210Pb budget in the eastern Chukchi Sea during summer 2003[J]. Deep-Sea Research II: Topical Studies in Oceanography, 2012, 81–84: 53−62. doi: 10.1016/j.dsr2.2012.03.011
    [32] Yang J Y T, Kao S J, Dai Minhan, et al. Examining N cycling in the northern South China Sea from N isotopic signals in nitrate and particulate phases[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 2118−2136. doi: 10.1002/2016JG003618
    [33] Chen Min, Guo Laodong, Ma Qiang, et al. Zonal patterns of of δ13C, δ15N and 210Po in the tropical and subtropical North Pacific[J]. Geophysical Research Letters, 2006, 33(4): L04609.
    [34] Zhang Run, Chen Min, Cao Jianping, et al. Nitrogen fixation in the East China Sea and southern Yellow Sea during summer 2006[J]. Marine Ecology Progress Series, 2012, 447: 77−86. doi: 10.3354/meps09509
    [35] Yang Weifeng, Chen Min, Li Guangxue, et al. Relocation of the Yellow River as revealed by sedimentary isotopic and elemental signals in the East China Sea[J]. Marine Pollution Bulletin, 2009, 58(6): 923−927. doi: 10.1016/j.marpolbul.2009.03.019
    [36] Yang Weifeng, Chen Min, Zhang Fang, et al. Anthropogenic impacts on sedimentation in Jiaozhou Bay, China[J]. Journal of Coastal Conservation, 2016, 20(6): 501−506. doi: 10.1007/s11852-016-0466-4
    [37] Han Aiqin, Dai Minhan, Kao S J, et al. Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling[J]. Limnology and Oceanography, 2012, 57(2): 486−502. doi: 10.4319/lo.2012.57.2.0486
    [38] Liu Sumei, Qi Xiaohong, Li Xiaona, et al. Nutrient dynamics from the Changjiang (Yangtze River) Estuary to the East China Sea[J]. Journal of Marine Systems, 2016, 154: 15−27. doi: 10.1016/j.jmarsys.2015.05.010
    [39] Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008, 28(12): 1483−1489. doi: 10.1016/j.csr.2007.02.009
    [40] Wang Bin, Chen Jianfang, Jin Haiyan, et al. Diatom bloom-derived bottom water hypoxia off the Changjiang Estuary, with and without typhoon influence[J]. Limnology and Oceanography, 2017, 62(4): 1552−1569. doi: 10.1002/lno.10517
    [41] Wang Kui, Chen Jianfang, Ni Xiaobin, et al. Real-time monitoring of nutrients in the Changjiang Estuary reveals short-term nutrient-algal bloom dynamics[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5390−5403. doi: 10.1002/2016JC012450
    [42] Li Dewang, Chen Jianfang, Ni Xiaobo, et al. Effects of biological production and vertical mixing on sea surface pCO2 variations in the Changjiang River plume during early autumn: A buoy-based time series study[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6156−6173. doi: 10.1029/2017JC013740
    [43] Qi Di, Chen Liqi, Chen Baoshan, et al. Increase in acidifying water in the western Arctic Ocean[J]. Nature Climate Change, 2017, 7(3): 195−199. doi: 10.1038/nclimate3228
    [44] Bai Youcheng, Sicre M A, Chen Jianfang, et al. Seasonal and spatial variability of sea ice and phytoplankton biomarker flux in the Chukchi Sea (western Arctic Ocean)[J]. Progress in Oceanography, 2019, 171: 22−37. doi: 10.1016/j.pocean.2018.12.002
    [45] Sun Weiping, Hu Chuanyu, Han Zhengbing, et al. Zn/Si records in diatom opal from Prydz Bay, East Antarctica[J]. Marine Geology, 2016, 381: 34−41. doi: 10.1016/j.margeo.2016.08.009
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  717
  • HTML全文浏览量:  45
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-17
  • 修回日期:  2019-08-07
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回