留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
魏泽勋,郑全安,杨永增,等. 中国物理海洋学研究70年:发展历程、学术成就概览[J]. 海洋学报,2019,41(10):23–64,doi:10.3969/j.issn.0253−4193.2019.10.003
引用本文: 魏泽勋,郑全安,杨永增,等. 中国物理海洋学研究70年:发展历程、学术成就概览[J]. 海洋学报,2019,41(10):23–64,doi:10.3969/j.issn.0253−4193.2019.10.003
Wei Zexun,Zheng Quanan,Yang Yongzeng, et al. Physical oceanography research in China over past 70 years:Overview of development history and academic achievements[J]. Haiyang Xuebao,2019, 41(10):23–64,doi:10.3969/j.issn.0253−4193.2019.10.003
Citation: Wei Zexun,Zheng Quanan,Yang Yongzeng, et al. Physical oceanography research in China over past 70 years:Overview of development history and academic achievements[J]. Haiyang Xuebao,2019, 41(10):23–64,doi:10.3969/j.issn.0253−4193.2019.10.003

中国物理海洋学研究70年:发展历程、学术成就概览

doi: 10.3969/j.issn.0253-4193.2019.10.003
详细信息
    作者简介:

    魏泽勋(1970—),男,安徽省巢湖市人,从事海洋环流、潮汐潮流的数值模拟和理论研究。E-mail:weizx@fio.org.cn注:第三名及以后作者排名不分先后

  • 中图分类号: P733

Physical oceanography research in China over past 70 years:Overview of development history and academic achievements

  • 摘要: 本文概略评述新中国成立70年来物理海洋学各分支研究领域的发展历程和若干学术成就。中国物理海洋学研究起步于海浪、潮汐、近海环流与水团,以及以风暴潮为主的海洋气象灾害的研究。随着国力的增强,研究领域不断拓展,涌现了大量具有广泛影响力的研究成果,其中包括:提出了被国际广泛采用的“普遍风浪谱”和“涌浪谱”,发展了第三代海浪数值模式;提出了“准调和分析方法”和“潮汐潮流永久预报”等潮汐潮流的分析和预报方法;发现并命名了“棉兰老潜流”,揭示了东海黑潮的多核结构及其多尺度变异机理等,系统描述了太平洋西边界流系;提出了印度尼西亚贯穿流的南海分支(或称南海贯穿流);不断完善了中国近海陆架环流系统,在南海环流、黑潮及其分支、台湾暖流、闽浙沿岸流、黄海冷水团环流、黄海暖流、渤海环流,以及陆架波方面均取得了深刻的认识;从大气桥和海洋桥两个方面对太平洋–印度洋–大西洋洋际相互作用进行了系统的总结;发展了浅海水团的研究方法,基本摸清了中国近海水团的分布和消长特征与机制,在大洋和极地水团分布及运动研究方面也做出了重要贡献;阐明了南海中尺度涡的宏观特征和生成机制,揭示了中尺度涡的三维结构,定量评估了其全球物质与能量输运能力;基本摸清了中国近海海洋锋的空间分布和季节变化特征,提出了地形、正压不稳定和斜压不稳定等锋面动力学机制;构建了“南海内波潜标观测网”,实现了对内波生成–演变–消亡全过程机理的系统认识;发展了湍流的剪切不稳定理论,提出了海流“边缘不稳定”的概念,开发了海洋湍流模式,提出了湍流混合参数化的新方法等;在海洋内部混合机制和能量来源方面取得了新的认识,并阐述了混合对海洋深层环流、营养物质输运等过程的影响;研发了全球浪–潮–流耦合模式,推出一系列海洋与气候模式;发展了可同化主要海洋观测数据的海洋数据同化系统和用于ENSO预报的耦合同化系统;建立了达到国际水准的非地转(水槽/水池)和地转(旋转平台)物理模 型实验平台;发展了ENSO预报的误差分析方法,建立了海洋和气候系统年代际变化的理论体系,揭示了中深层海洋对全球气候变化的响应;初步建成了中国近海海洋观测网;持续开展南北极调查研究;建立了台风、风暴潮、巨浪和海啸的业务化预报系统,为中国气象减灾提供保障;突破了国外的海洋技术封锁,研发了万米水深的深水水听器和海洋光学特性系列测量仪器;建立了溢油、危险化学品漂移扩散等预测模型,为伴随海洋资源开发所带来的风险事故的应急处理和预警预报提供科学支撑。文中引用的大量学术成果文献(每位第一作者优选不超过3篇)显示,经过70年的发展,中国物理海洋学研究培养了一支实力雄厚的科研队伍,这是最宝贵的成果。这支队伍必将成为中国物理海洋学研究攀登新高峰的主力军。
  • 图  1  热带太平洋–印度洋–大西洋之间的海气反馈过程示意图[132]

    Fig.  1  Pantropical feedbacks affecting ENSO[132]

    图  2  中国海洋大学南海中尺度涡实验(2013–2014年)

    a. 研究区, 红星代表ADCP锚系观测站位, 填色图表示水深,黑色虚线分别表示100 m、500 m、1 000 m、2 000 m和3 000 m等深线,黄线和粉红线分别代表实验期间一个暖涡和一个冷涡的运动轨迹;b. 该暖涡从吕宋海峡西口向西传播过程中发生的耗散,各动力学过程对涡旋耗散的贡献见图中黑色标识[197]

    Fig.  2  South China Sea Mesoscale Eddy Experiment (S-MEE) by Ocean University of China in 2013/2014

    a. Locations of the S-MEE mooring arrays (red stars). The color shading shows bathymetry with black dashed lines indicating the isobaths of 100 m, 500 m, 1 000 m, 2 000 m and 3 000 m, respectively; yellow and magenta lines denote the trajectories of an anticyclonic eddy (AE) and a cyclonic eddy (CE), respectively. b. Schematic diagram of the eddy dissipation processes. Contribution of each dynamical process to the eddy dissipation is illustrated in this schematic[197]

    图  3  利用卫星图像绘制的南海内波(a)与传播方向(b)分布图[240]

    Fig.  3  The distribution map (a) and the propagation direction map (b) of internal waves in the South China Sea[240]

    图  4  海洋带状流:湍动海洋中的有序结构

    红色为东向流,蓝色为西向流

    Fig.  4  Ocean strip flow: organized structures in turbulent oceans

    Shading indicates flow direction: Red is eastward current and blue westward current

    图  5  大型实验平台主体设计

    Fig.  5  Schematic design diagram of large experimental platform

    图  6  西太平洋科学观测网潜标和浮标位置图(黑色五角星)

    Fig.  6  Locations of subsurface moorings and buoys in the western Pacific (black pentacle)

    表  1  国内主要地球流体旋转实验平台

    Tab.  1  Major geophysical hydrodynamic rotational experimental platforms in China

    实验室名称 所属单位 直径 深度 旋转周期
    地转平台实验室 中国海洋大学 40 cm;2 m 40 cm;40 cm
    行星流体力学实验转台 南京信息工程大学 1 m 40 cm >2 s
    大气和海洋环流移动模拟实验平台系统 中国科学院大气物理研究所 0.8~1.5 m >4 s
    地球流体力学旋转水槽 浙江大学 3 m 50 cm >3 s
    下载: 导出CSV
  • [1] 中国大百科全书普及版编委会. 海洋—神秘的水世界[M]. 北京: 中国大百科出版社, 2013.

    China Encyclopedia Popularization Editorial Committee. Oceans—Mysterious Water World[M]. Beijing: China Encyclopedia Press, 2013.
    [2] 中国科学技术协会. 中国海洋学学科史[M]. 北京: 中国科学技术出版社, 2015.

    China Association for Science and Technology. History of Ocean Sciences in China[M]. Beijing: China Science and Technology Press, 2015.
    [3] 中华人民共和国科学技术委员会海洋组海洋综合调查办公室. 全国海洋综合调查报告[R]. 北京: 科学出版社, 1964.

    The Office of Ocean Comprehensive Survey, Ocean Group, the State Commission for Science and Technology of the People's Republic of China. Report of Comprehensive Survey of China Seas[R]. Beijing: Science Press, 1964.
    [4] 《中国海洋志》编纂委员会. 中国海洋志[M]. 郑州: 大象出版社, 2003.

    The Compilation Committee of History Oceanography in China. History of Oceanography in China[M]. Zhengzhou: Daxiang Press, 2003.
    [5] 于卫东, 方越, 刘琳, 等. 第二次国际印度洋科学考察计划(IIOE-2)介绍[J]. 海洋科学进展, 2017, 35(1): 1−7. doi: 10.3969/j.issn.1671-6647.2017.01.001

    Yu Weidong, Fang Yue, Liu Lin, et al. Introduction of the second international Indian Ocean expedition (IIOE-2)[J]. Advances in Marine Science, 2017, 35(1): 1−7. doi: 10.3969/j.issn.1671-6647.2017.01.001
    [6] 刘增宏, 吴晓芬, 许建平, 等. 中国Argo海洋观测十五年[J]. 地球科学进展, 2016, 31(5): 445−460. doi: 10.11867/j.issn.1001-8166.2016.05.0445.

    Liu Zenghong, Wu Xiaofen, Xu Jianping, et al. Fifteen years of ocean observations with China Argo[J]. Advances in Earth Science, 2016, 31(5): 445−460. doi: 10.11867/j.issn.1001-8166.2016.05.0445.
    [7] 乔方利. 中国区域海洋学——物理海洋学[M]. 北京: 海洋出版社, 2012.

    Qiao Fangli. Regional Oceanography of China Seas—Physical Oceanography[M]. Beijing: China Ocean Press, 2012.
    [8] 《中国海洋年鉴》编纂委员会. 2017中国海洋年鉴[M]. 北京: 海洋出版社, 2018.

    Compilation Committee of China Ocean Yearbook. 2017 China Ocean Yearbook[M]. Beijing: China Ocean Press, 2018.
    [9] 国家海洋局极地专项办公室. 南极周边海域物理海洋和海洋气象考察[M]. 北京: 海洋出版社, 2016.

    Chinese Arctic and Antarctic Administration. Physical Oceanography and Marine Meteorological Investigations around the Antarctic[M]. Beijing: China Ocean Press, 2016.
    [10] 国家海洋局极地专项办公室. 北极海域物理海洋和海洋气象考察[M]. 北京: 海洋出版社, 2016.

    Chinese Arctic and Antarctic Administration. Physical Oceanography and Marine Meteorology in the Arctic Seas[M]. Beijing: China Ocean Press, 2016.
    [11] Wei Zexun, Li Shujiang, Susanto R D, et al. An overview of 10-year observation of the South China Sea branch of the Pacific to Indian Ocean throughflow at the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 1−11. doi: 10.1007/s13131-019-1410-x
    [12] 胡敦欣. 西北太平洋海洋环流和气候试验国际合作项目(NPOCE)——科学/贯彻计划[M]. 北京: 海洋出版社, 2011.

    Hu Dunxin. Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE)-Science/Implementation Plan[M]. Beijing: China Ocean Press, 2011.
    [13] 中国人民解放军海军司令部海道测量部. 实用潮汐学[M]. 天津: 中国人民解放军海军司令部海道测量部, 1959.

    Hydrography (Sea Survey) Department, PLA Navy Command. Practical Tidology[M]. Tianjin: The Department of Navigation Survey, PLA Navy Headquarters, 1959.
    [14] 文圣常. 海浪原理[M]. 济南: 山东人民出版社, 1962.

    Wen Shengchang. Principles of Sea Waves[M]. Jinan:Shandong People’s Publishing House, 1962.
    [15] 毛汉礼, 任允武, 万国铭. 应用T-S关系定量地分析浅海水团的初步研究[J]. 海洋与湖沼, 1964, 6(1): 1−22.

    Mao Hanli, Ren Yunwu, Wan Guomin. A preliminary investigation on the application of using T-S diagrams for a quantitative analysis of the watermasses in the shallow water area[J]. Oceanologia et Limnologia Sinica, 1964, 6(1): 1−22.
    [16] 景振华. 海流原理[M ]. 北京: 科学出版社, 1966.

    Jing Zhenhua. Principles of Ocean Current[M]. Beijing: Science Press, 1966.
    [17] 毛汉礼. 海洋科学[M ]. 北京: 科学出版社, 1955.

    Mao Hanli. The Sea[M]. Beijing: Science Press, 1955.
    [18] 陈宗镛. 潮汐学[M]. 北京: 科学出版社, 1980.

    Chen Zongyong. Tidology[M]. Beijing: Science Press, 1980.
    [19] 冯士筰. 风暴潮导论[M]. 北京: 科学出版社, 1982.

    Feng Shizuo. Introduction to Storm Surge[M]. Beijing: Science Press, 1982.
    [20] 王彬华. 海雾[M]. 北京: 海洋出版社, 1983.

    Wang Binhua. Sea Fog[M]. Beijing: China Ocean Press, 1983.
    [21] 文圣常, 余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1984.

    Wen Shengchang, Yu Zhouwen.Theories and Calculation Principles of Sea Waves[M]. Beijing: Science Press, 1984.
    [22] 方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986.

    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. Analysis and Prediction of Tides and Tidal Currents[M]. Beijing: China Ocean Press, 1986.
    [23] 苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005.

    Su Jilan, Yuan Yeli. Hydrography of the Seas Adjacent to China[M]. Beijing: China Ocean Press, 2005.
    [24] Hu Dunxin, Wu Lixin, Cai Wenju, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299−308. doi: 10.1038/nature14504
    [25] 王东晓, 方国洪, 王启, 等. 热带太平洋环流变异与海气相互作用[M]. 北京: 海洋出版社, 2009.

    Wang Dongxiao, Fang Guohong, Wang Qi, et al. Tropical Pacific Ocean Circulation and Air–Sea Interaction[M]. Beijing: China Ocean Press, 2009.
    [26] 李建平, 吴国雄, 胡敦欣. 亚印太交汇区海气相互作用及其对我国短期气候的影响[M]. 北京: 气象出版社, 2011.

    Li Jianping, Wu Guoxiong, Hu Dunxin. Sea-Air Interaction in the Asian-Indian Ocean-Pacific Interchange Region and Its Impact on Short-Term Climate in China[M]. Beijing: China Meteorological Press, 2011.
    [27] 冷疏影, 李薇, 李克强, 等. 2018年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2018, 33(12): 1305−1313.

    Leng Shuying, Li Wei, Li Keqiang, et al. An introduction of the projects managed by division of marine and polar sciences, department of earth sciences, national natural science foundation of China in 2018[J]. Advances in Earth Science, 2018, 33(12): 1305−1313.
    [28] Yuan Yeli, Hua Feng, Pan Zengdi, et al. LAGFD-WAM numerical wave model-I. Basic physical model[J]. Acta Oceanologica Sinica, 1991, 10(4): 483−488.
    [29] 方国洪, 魏泽勋, 王永刚. 我国潮汐潮流区域预报的发展[J]. 地球科学进展, 2008, 23(4): 331−336. doi: 10.3321/j.issn:1001-8166.2008.04.001

    Fang Guohong, Wei Zexun, Wang Yonggang. Development of tide and tidal current regional prediction in China[J]. Advances in Earth Science, 2008, 23(4): 331−336. doi: 10.3321/j.issn:1001-8166.2008.04.001
    [30] 刘海龙. LASG/IAP气候系统海洋模式(LICOM 1.0)参考手册[M]. 北京: 科学出版社, 2004.

    Liu Hailong. Manual of LASG/IAP Climate System Ocean Model LICOM 1.0 [M]. Beijing: Science Press, 2004.
    [31] 宋振亚, 刘卫国, 刘鑫, 等. 海量数据驱动下的高分辨率海洋数值模式发展与展望[J]. 海洋科学进展, 2019, 37(2): 161−170. doi: 10.3969/j.issn.1671-6647.2019.02.001

    Song Zhenya, Liu Weiguo, Liu Xin, et al. Research progress and perspective of the key technologies for ocean numerical model driven by the mass data[J]. Advances in Marine Science, 2019, 37(2): 161−170. doi: 10.3969/j.issn.1671-6647.2019.02.001
    [32] 张荣华, 高川. 关于2015年厄尔尼诺事件的二次变暖过程: 一个基于中等复杂程度海洋模式的诊断分析[J]. 中国科学: 地球科学, 2017, 47(9): 1027−1039.

    Zhang Ronghua, Gao Chuan. Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model[J]. Scientia Sinica: Terrae, 2017, 47(9): 1027−1039.
    [33] 周天军, 邹立维, 吴波, 等. 中国地球气候系统模式研究进展: CMIP计划实施近20年回顾[J]. 气象学报, 2014, 72(5): 892−907. doi: 10.11676/qxxb2014.083

    Zhou Tianjun, Zou Liwei, Wu Bo, et al. Development of earth/climate system models in China: A review from the coupled model intercomparison proiect perspective[J]. Acta Meteorologica Sinica, 2014, 72(5): 892−907. doi: 10.11676/qxxb2014.083
    [34] 管长龙. 我国海浪理论及预报研究的回顾与展望[J]. 青岛海洋大学学报, 2000, 30(4): 549−556. doi: 10.3969/j.issn.1672-5174.2000.04.029

    Guan Changlong. A review of history and prospect for study of sea wave theory and its forecast in China[J]. Journal Of Ocean University Of Qingdao, 2000, 30(4): 549−556. doi: 10.3969/j.issn.1672-5174.2000.04.029
    [35] 喻沧. 20世纪中国学术大典-测绘学、大气科学、固体地球物理学、应用地球物理学、海洋科学[M]. 福州: 福建教育出版社, 2002.

    Yu Cang. 20th Century Chinese Academic Dictionary: Surveying and Mapping, Atmospheric Sciences, Solid Earth Geophysics, Applied Geophysics and Ocean Science[M]. Fuzhou: Fujian Education Press, 2002.
    [36] 侯一筠, 段永亮, 陈更新, 等. 浅水非线性随机海浪的波高分布[J]. 中国科学D辑: 地球科学, 2009, 39(12): 1795−1800.

    Hou Yijun, Duan Yongliang, Chen Gengxin, et al. Statistical distribution of nonlinear random wave height in shallow water[J]. Science in China(Series D: Earth Sciences), 2009, 39(12): 1795−1800.
    [37] 尹宝树, 王涛, 侯一筠, 等. 渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究[J]. 海洋与湖沼, 2001, 32(1): 109−116. doi: 10.3321/j.issn:0029-814X.2001.01.017

    Yin Baoshu, Wang Tao, Hou YiJun, et al. Numerical study of the influence of waves and tide-surge interaction on waves in Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2001, 32(1): 109−116. doi: 10.3321/j.issn:0029-814X.2001.01.017
    [38] Chen Ge, Chapron B, Ezraty R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(11): 1849−1859. doi: 10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2
    [39] 张书文. 波浪破碎气体的卷入过程及相关统计量的估计[J]. 物理学报, 2008, 57(5): 3287−3292. doi: 10.3321/j.issn:1000-3290.2008.05.106

    Zhang Shuwen. Air bubble entrainment by breaking waves and estimation of the related statistical quantities[J]. Acta Physical Sinica, 2008, 57(5): 3287−3292. doi: 10.3321/j.issn:1000-3290.2008.05.106
    [40] Yuan Yeli, Han Lei, Hua Feng, et al. The statistical theory of breaking entrainment depth and surface whitecap coverage of real sea waves[J]. Journal of Physical Oceanography, 2009, 39(1): 143−161. doi: 10.1175/2008JPO3944.1
    [41] 赵栋梁. 海洋飞沫及其对海-气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624−632.

    Zhao Dongliang. Progress in sea spay and its effects on air-sea interaction[J]. Advance in Earth Sciences, 2012, 27(6): 624−632.
    [42] Wang Haili, Yang Yongzeng, Sun Baonan, et al. Improvements to the statistical theoretical model for wave breaking based on the ratio of breaking wave kinetic and potential energy[J]. Science China: Earth Sciences, 2017, 60(1): 180−187. doi: 10.1007/s11430-016-0053-3
    [43] Dai Dejun, Qiao Fangli, Sulisz W, et al. An experiment on the nonbreaking surface-wave-induced vertical mixing[J]. Journal of Physical Oceanography, 2010, 40(9): 2180−2188. doi: 10.1175/2010JPO4378.1
    [44] Qiao Fangli, Yuan Yeli, Deng Jia, et al. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150201. doi: 10.1098/rsta.2015.0201
    [45] 孙孚, 钱成春, 王伟, 等. 海浪波生切应力及其对流驱动作用的估计[J]. 中国科学D辑: 地球科学, 2004, 47(12): 1147−1154.

    Sun Fu, Gao Shan, Wang Wei, et al. Wave-induced stress and estimation of its driven effect on currents[J]. Science in China Series D: Earth Sciences, 2004, 47(12): 1147−1154.
    [46] 吴克俭, 杨忠良, 刘斌, 等. 波浪对Ekman层的能量输入[J]. 中国科学 D辑: 地球科学, 2008, 38(1): 134−140.

    Wu Kejian, Yang Zhongliang, Liu Bin, et al. Wave energy input to the Ekman layer[J]. Science in China Series D: Earth Sciences, 2008, 38(1): 134−140.
    [47] 袁业立, 乔方利, 尹训强, 等. 基于二阶矩闭合模式平衡解的海浪生湍流混合系数解析估计[J]. 中国科学: 地球科学, 2013, 43(2): 171−180.

    Yuan Yeli, Qiao Fangli, Yin Xunqiang, et al. Analytical estimation of mixing coefficient induced by surface wave-generated turbulence based on the equilibrium solution of the second-order turbulence closure model[J]. Science China: Earth Sciences, 2013, 43(2): 171−180.
    [48] Wen Shengchang, Zhang Dacuo, Chen Bohai, et al. A hybrid model for numerical wave forecasting and its implementation-I. The wind wave model[J]. Acta Oceanologica Sinica, 1989, 8(1): 1−14.
    [49] 尹宝树, 王涛, 范顺庭. YW-SWP海浪数值预报模式及其应用[J]. 海洋与湖沼, 1994, 25(3): 293−300. doi: 10.3321/j.issn:0029-814X.1994.03.010

    Yin Baoshu, Wang Tao, Fan Shunting. YW-SWP sea wave numerical prediction model and its application[J]. Oceanologia et Limnologia Sinica, 1994, 25(3): 293−300. doi: 10.3321/j.issn:0029-814X.1994.03.010
    [50] 杨永增, 乔方利, 赵伟, 等. 球坐标系下MASNUM海浪数值模式的建立及其应用[J]. 海洋学报, 2005, 27(2): 1−7. doi: 10.3321/j.issn:0253-4193.2005.02.001

    Yang Yongzeng, Qiao Fangli, Zhao Wei, et al. MASNUM ocean wave numerical model in spherical coordinates and its application[J]. Haiyang Xuebao, 2005, 27(2): 1−7. doi: 10.3321/j.issn:0253-4193.2005.02.001
    [51] Sun Meng, Yang Yongzeng, Yin Xunqiang, et al. Data assimilation of ocean surface waves using Sentinel-1 SAR during typhoon Malakas[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 70: 35−42. doi: 10.1016/j.jag.2018.04.004
    [52] 郑文振. 潮汐工作三十年的成就和展望[M]//中国海洋学会. 我国海洋科学三十年. 北京: 海洋出版社, 1980.

    Zhen Wenzhen. Achievements and prospects of tidal research over the past 30 years[M]//China Oceanographic Society. Marine Science Researches in the Recent 30 Years in China. Beijing: China Ocean Press, 1980.
    [53] 陈满春, 储英杰, 刘克修, 等. 浅水港口潮汐预报准调和方法的改进[J]. 海洋学报, 2006, 28(1): 9−17. doi: 10.3969/j.issn.1009-5470.2006.01.002

    Chen Manchun, Chu Yingjie, Liu Kexiu, et al. Improved schemes of quasi-harmonic method for tide prediction of shallow water ports[J]. Haiyang Xuebao, 2006, 28(1): 9−17. doi: 10.3969/j.issn.1009-5470.2006.01.002
    [54] 黄祖珂, 黄磊. 潮汐原理与计算[M]. 青岛: 中国海洋大学出版社, 2005.

    Huang Zuke, Huang Lei. Tidal Theory and Calculation[M]. Qingdao: China Ocean University Press, 2005.
    [55] 朱江, 曾庆存, 郭冬建, 等. 利用伴随算子法从岸边潮位站资料估计近岸模式的开边界条件[J]. 中国科学(D辑): 地球科学, 1997, 27(5): 462−468.

    Zhu Jiang, Zeng Qingcun, Guo Dongjian, et al. Estimation of open boundary conditions for nearshore model from tidal gauge data by Adjoint Operator Method[J]. Science in China Series D: Science in China, 1997, 27(5): 462−468.
    [56] 丘仲锋, 何宜军, 吕咸青. 黄海、渤海TOPEX/Poseidon高度计资料潮汐伴随同化[J]. 海洋学报, 2005, 27(4): 10−18. doi: 10.3321/j.issn:0253-4193.2005.04.002

    Qiu Zhongfeng, He Yijun, Lü Xianqing. Tidal adjoint assimilation with the TOPEX/Poseidon altimetry data in the Huanghai and Bohai Seas[J]. Haiyang Xuebao, 2005, 27(4): 10−18. doi: 10.3321/j.issn:0253-4193.2005.04.002
    [57] 汪一航, 方国洪, 魏泽勋, 等. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353−359.

    Wang Yihang, Fang Guohong, Wei Zexun, et al. Accuracy assessment of global ocean tide models base on satellite altimetry[J]. Advances in Earth Science, 2010, 25(4): 353−359.
    [58] 王辉, 万莉颖, 秦英豪, 等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090−1104. doi: 10.11867/j.issn.1001-8166.2016.10.1090

    Wang Hui, Wan Liying, Qin Yinghao, et al. Development and application of the Chinese global operational oceanography forecasting system[J]. Advances in Earth Science, 2016, 31(10): 1090−1104. doi: 10.11867/j.issn.1001-8166.2016.10.1090
    [59] 崔欣梅, 方国洪, 滕飞, 等. 潮汐共振研究综述[J]. 海洋科学进展, 2015, 33(4): 537−546. doi: 10.3969/j.issn.1671-6647.2015.04.012

    Cui Xinmei, Fang Guohong, Teng Fei, et al. A review on studies of tidal resonance[J]. Advances in Marine Science, 2015, 33(4): 537−546. doi: 10.3969/j.issn.1671-6647.2015.04.012
    [60] Teng Fei, Fang Guohong, Xu Xiaoqing. Effects of internal tidal dissipation and self-attraction and loading on semidiurnal tides in the Bohai Sea, Yellow Sea and East China Sea: a numerical study[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 987−1001. doi: 10.1007/s00343-017-6087-4
    [61] 左军成, 左常圣, 李娟, 等. 近十年我国海平面变化研究进展[J]. 河海大学学报: 自然科学版, 2015, 43(5): 442−449. doi: 10.3876/j.issn.1000-1980.2015.05.008

    Zuo Juncheng, Zuo Changsheng, LI Juan, et al. Advances in research on sea level variations in China from 2006 to 2015[J]. Journal of Hohai University: Natural Sciences, 2015, 43(5): 442−449. doi: 10.3876/j.issn.1000-1980.2015.05.008
    [62] Chen Xianyao, Zhang Xuebin, Church J A, et al. The increasing rate of global mean sea-level rise during 1993–2014[J]. Nature Climate Change, 2017, 7(7): 492−495. doi: 10.1038/nclimate3325
    [63] 毛汉礼. 海洋学的任务、发展和现况[J]. 科学通报, 1956(9): 7−15.

    Mao Hanli. The Mission, development and current situation of oceanography[J]. Cinese Science Bulletin, 1956(9): 7−15.
    [64] 吕炯. 西北太平洋及其在东亚气候上的问题[J]. 地理学报, 1951,(1/2): 69−88.

    Lü Jiong. The northwestern Pacific Ocean and its influences on the climate of China[J]. Acta Geographica Sinica, 1951,(1/2): 69−88.
    [65] 张丕远, 陈恩久. 北太平洋地区海面水温与气温的一些特征[J]. 地理学报, 1961, 27: 57−65.

    Zhang Peiyuan, Chen Enjiu. Characteristics of sea surface temperature and air temperature in the North Pacific[J]. Acta Geographica Sinica, 1961, 27: 57−65.
    [66] 苏纪兰, 袁耀初, 姜景忠. 建国以来我国物理海洋学的进展[J]. 地球物理学报, 1994, 37(S1): 85−95.

    Su Jilan, Yuan Yaochu, Jiang Jingzhong. Advances in physical oceanography in China since the establishment of the PRC[J]. Acta Geophysica Sinica, 1994, 37(S1): 85−95.
    [67] 袁耀初. 西北太平洋及其边缘海环流第1卷[M]. 北京: 海洋出版社, 2016.

    Yuan Yaochu. Circulations in the Northwestern Pacific and its Neighboring Marginal Seas-Volume Ⅰ[M]. Beijing: China Ocean Press, 2016.
    [68] 袁耀初. 西北太平洋及其边缘海环流第2卷[M]. 北京: 海洋出版社, 2017.

    Yuan Yaochu. Circulations in the Northwestern Pacific and its Neighboring Marginal Seas - Volume Ⅱ[M]. Beijing: China Ocean Press, 2017.
    [69] Qu Tangdong, Kagimoto T, Yamagata T. A subsurface countercurrent along the east coast of Luzon[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 1997, 44(3): 413−423. doi: 10.1016/S0967-0637(96)00121-5
    [70] Wang Fan, Hu Dunxin. Preliminary study on the formation mechanism of counter western boundary undercurrents below the thermocline-a conceptual model[J]. Chinese Journal of Oceanology and Limnology, 1999, 17(1): 1−9. doi: 10.1007/BF02842694
    [71] Qu Tangdong, Mitsudera H, Yamagata T. On the western boundary currents in the Philippine Sea[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7537−7548. doi: 10.1029/98JC00263
    [72] 巢纪平, 张人禾. 热带海气相互作用波及其不稳定性[J]. 气象学报, 1990, 48(1): 46−54. doi: 10.11676/qxxb1990.006

    Chao Jiping, Zhang Renhe. The air-sea interaction waves in the tropics and their instabilities[J]. Acta Meteorologica Sinica, 1990, 48(1): 46−54. doi: 10.11676/qxxb1990.006
    [73] Liu Qinyu, Qin Zenghao. Nonlinear Rossby waves in the inertial boundary current and their possible relation to the variability of the Kuroshio[J]. Elsevier Oceanography Series, 1991, 54: 49−61.
    [74] 王凡, 汪嘉宁, 张林林, 等. 主流系与西太平洋暖池变异机制研究进展[J]. 海洋与湖沼, 2017, 48(6): 1145−1155.

    Wang Fan, Wang Jianing, Zhang Linlin, et al. Research progresses in the variability of western Pacific main current system and warm pool[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1145−1155.
    [75] Wang Fujun, Wang Qingye, Hu Dunxin, et al. Seasonal variability of the Mindanao Current determined using mooring observations from 2010 to 2014[J]. Journal of Oceanography, 2016, 72(5): 787−799. doi: 10.1007/s10872-016-0373-1
    [76] Ren Qiuping, Li Yuanlong, Wang Fan, et al. Seasonality of the Mindanao Current/Undercurrent System[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1105−1122. doi: 10.1002/2017JC013474
    [77] Guan Bingxian. Major features of warm and cold eddies south of the Nansei Islands[J]. Chinese Journal of Oceanology and Limnology, 1983, 1(3): 248−257. doi: 10.1007/BF02849605
    [78] Zhou Hui, Yuan Dongliang, Guo Peifang, et al. Meso-scale circulation at the intermediate-depth east of Mindanao observed by Argo profiling floats[J]. Science China: Earth Sciences, 2010, 53(3): 432−440. doi: 10.1007/s11430-009-0196-7
    [79] Sheu W J, Wu C R, Oey L Y. Blocking and westward passage of eddies in the Luzon Strait[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2010, 57(19/20): 1783−1791. doi: 10.1016/j.dsr2.2010.04.004
    [80] Yang Guang, Wang Fan, Li Yuanlong, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1906−1925. doi: 10.1002/jgrc.20164
    [81] Zhao Jun, Li Yuanlong, Wang Fan, et al. Spatial-temporal patterns and driving mechanisms of semiannual variations in the Philippine Sea[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2012, 68: 105−115. doi: 10.1016/j.dsr.2012.07.001
    [82] Chiang T L, Wu C R, Qu Tangdong, et al. Activities of 50–80 day subthermocline eddies near the Philippine coast[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3606−3623. doi: 10.1002/2013JC009626
    [83] Xie Lingling, Zheng Quanan, Tian Jiwei, et al. Cruise observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea[J]. Journal of Physical Oceanography, 2016, 46(10): 2897−2913. doi: 10.1175/JPO-D-16-0071.1
    [84] Wang Zheng, Yuan Dongliang. Nonlinear dynamics of two western boundary currents colliding at a gap[J]. Journal of Physical Oceanography, 2012, 42(11): 2030−2040. doi: 10.1175/JPO-D-12-05.1
    [85] Ma Xiaohui, Jing Zhao, Chang Ping, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7613): 533−537. doi: 10.1038/nature18640
    [86] Yuan Dongliang, Zhang Zhichun, Chu P C, et al. Geostrophic circulation in the tropical North Pacific Ocean based on Argo profiles[J]. Journal of Physical Oceanography, 2013, 44(2): 558−575.
    [87] Chen Zhaohui, Wu Lixin. Long-term change of the Pacific North Equatorial Current bifurcation in SODA[J]. Journal of Geophysical Research: Oceans, 2014, 41(9): 3172−3180.
    [88] Zhai Fangguo, Hu Dunxin, Wang Qingye, et al. Long-term trend of Pacific South Equatorial Current bifurcation over 1950-2010[J]. Geophysical Research Letters, 2014, 41: 2014GL059934.
    [89] Li Yuanlong, Wang Fan, Zhai Fangguo. Interannual variations of subsurface spiciness in the Philippine Sea: Observations and mechanism[J]. Journal Physical Oceanography, 2012, 42(6): 1022−1038. doi: 10.1175/JPO-D-12-06.1
    [90] Hsin Y C, Qiu Bo, Chiang T L, et al. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4305−4316. doi: 10.1002/jgrc.20323
    [91] Yan Youfang, Chassignet E P, Qi Yiquan, et al. Freshening of subsurface waters in the Northwest Pacific Subtropical Gyre: Observations and dynamics[J]. Journal of Physical Oceanography, 2013, 43(12): 2733−2751. doi: 10.1175/JPO-D-13-03.1
    [92] Zhao Jun, Li Yuanlong, Wang Fan. Dynamical responses of the west Pacific North Equatorial Countercurrent (NECC) system to El Niño Events[J]. Journal of Geophysical Research: Oceans, 2013, 118(6): 2828−2844. doi: 10.1002/jgrc.20196
    [93] Wang Jianing, Lu Youyu, Wang Fan, et al. Surface current in “Hotspot” serves as a new and effective precursor for El Niño prediction[J]. Scientific Reports, 2017, 7: 166. doi: 10.1038/s41598-017-00244-2
    [94] Duan Jing, Li Yuanlong, Wang Fan, et al. Decadal variations of the mindanao current during 1960-2010[J]. Journal of Geophysical Research-Oceans, 2019, 124(4): 2660−2678. doi: 10.1029/2019JC014975
    [95] Wu Chaorong, Wang Youlin, Lin Yongfu, et al. Weakening of the Kuroshio intrusion into the South China Sea under the global warming hiatus[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 5064−5070. doi: 10.1109/JSTARS.2016.2574941
    [96] Hsin Y C. Trends of the pathways and intensities of surface equatorial current system in the North Pacific Ocean[J]. Journal of Climate, 2016, 29(18): 6693−6710. doi: 10.1175/JCLI-D-15-0850.1
    [97] 黄荣辉, 孙凤英. 热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响[J]. 大气科学, 1994, 18(2): 141−151.

    Huang Ronghui, Sun Fengying. Impacts of the thermal state and the convective activities in the tropical western warm pool on the summer climate anomalies in East Asia[J]. Chinese Journal of Atmospheric Sciences, 1994, 18(2): 141−151.
    [98] 张启龙, 翁学传. 热带西太平洋暖池的某些海洋学特征分析[J]. 海洋科学集刊, 1997, (38): 31−38.

    Zhang Qilong, Weng Xuechuan. Analysis of some oceanographic characteristics of the tropical Western Pacific Warm Pool[J]. Studia Marina Sinica, 1997, (38): 31−38.
    [99] 傅刚, 周发琇, 朱抱真. 西太平洋暖池形成与维持的动力学机制[J]. 青岛海洋大学学报, 1993, 23(S2): 51−62.

    Fu Gang, Zhou Faxiu, Zhu Baozhen. Study of formation and maintenance mechanism of the West Pacific Warm Pool[J]. Journal of Ocean University of Qingdao, 1993, 23(S2): 51−62.
    [100] Hu Shijian, Hu Dunxin, Guan Cong, et al. Variability of the western Pacific Warm Pool structure associated with El Niño[J]. Climate Dynamics, 2017, 49(7/8): 2431−2449. doi: 10.1007/s00382-016-3459-y
    [101] Huang Ruixin, Wang Qi. Interior communication from the subtropical to the tropical oceans[J]. Journal of Physical Oceanography, 2001, 31(12): 3538−3550. doi: 10.1175/1520-0485(2001)031<3538:ICFTST>2.0.CO;2
    [102] Hong Lingya, Zhang Liping, Chen Zhaohui, et al. Linkage between the Pacific Decadal Oscillation and the low frequency variability of the Pacific Subtropical Cell[J]. Journal of Geophysical Research Oceans, 2014, 119(6): 3464−3477. doi: 10.1002/2013JC009650
    [103] Zhou Hui, Yuan Dongliang, Yang Li’na, et al. Decadal variability of the meridional geostrophic transport in the upper tropical North Pacific Ocean[J]. Journal of Climate, 2018, 31(15): 5891−5910. doi: 10.1175/JCLI-D-17-0639.1
    [104] Li Yuanlong, Wang Fan, Sun Yan. Low-Frequency spiciness variations in the tropical Pacific Ocean observed during 2003–2012[J]. Geophysical Research Letters, 2012, 39(23): L23601.
    [105] Gao Shan, Qu Tangdong, Fukumori I. Effects of mixing on the subduction of South Pacific waters identified by a simulated passive tracer and its adjoint[J]. Dynamics of Atmospheres and Oceans, 2011, 51(1/2): 45−54. doi: 10.1016/j.dynatmoce.2010.10.002
    [106] Liu Chengyan, Wu Lixin. An intensification trend of South Pacific mode water subduction rates over the 20th century[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): C07009.
    [107] Xu Lixiao, Xie Shangping, McClean J L, et al. Mesoscale eddy effects on the subduction of North Pacific mode waters[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 4867−4886. doi: 10.1002/2014JC009861
    [108] Wang Chunzai. Subthermocline tropical cells and equatorial subsurface countercurrents[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2005, 52(1): 123−135. doi: 10.1016/j.dsr.2004.08.009
    [109] Song Li’na, Li Yuanlong, Wang Jianing, et al. Tropical meridional overturning circulation observed by subsurface moorings in the western Pacific[J]. Scientific Reports, 2018, 8(1): 7632. doi: 10.1038/s41598-018-26047-7
    [110] 陈烈庭, 金祖辉, 罗绍华. 印度洋和南海海温变化的特征及其与大气环流的某些联系[J]. 海洋学报, 1985, 7(1): 103−110.

    Chen Lieting, Jin Zuhui, Luo Shaohua. Characteristics of sea temperature variations in the Indian Ocean and South China Sea and their association with atmospheric circulation[J]. Haiyang Xuebao, 1985, 7(1): 103−110.
    [111] Ji Zhengang, Chao Jiping. Teleconnections of the sea surface temperature in the Indian ocean with sea surface temperature in the eastern equatorial Pacific, and with the 500 hPa geopotential height field in the Northern Hemisphere[J]. Advances in Atmospheric Sciences, 1987, 4(3): 343−348. doi: 10.1007/BF02663604
    [112] 吴国雄, 孟文. 赤道印度洋–太平洋地区海气系统的齿轮式耦合和ENSO事件Ⅰ. 资料分析[J]. 大气科学, 1998, 22(4): 470−480. doi: 10.3878/j.issn.1006-9895.1998.04.09

    Wu Guoxiong, Meng Wen. Gearing between the Indo-monsoon circulation and the Pacific-walker circulation and the ENSO Part Ⅰ: data analyses[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(4): 470−480. doi: 10.3878/j.issn.1006-9895.1998.04.09
    [113] 李崇银, 黎鑫, 杨辉, 等. 热带太平洋–印度洋海温联合模及其气候影响[J]. 大气科学, 2018, 42(3): 505−523.

    Li Chongyin, Li Xin, Yang Hui, et al. Tropical Pacific-Indian Ocean associated mode and its climatic impacts[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 505−523.
    [114] Qiu Yun, Li Li, Yu Weidong. Behavior of the Wyrtki Jet observed with surface drifting buoys and satellite altimeter[J]. Geophysical Research Letters, 2009, 36(18): L18607.
    [115] Wang Jing. Observational bifurcation of Wyrtki Jets and its influence on the salinity balance in the eastern Indian Ocean[J]. Atmospheric and Oceanic Science Letters, 2017, 10(1): 36−43. doi: 10.1080/16742834.2017.1239506
    [116] Li Gen, Xie Shangping, Du Yan. Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability[J]. Journal of Climate, 2015, 28(8): 3093−3098. doi: 10.1175/JCLI-D-14-00810.1
    [117] Chen Gengxin, Han Weiqing, Shu Yeqiang, et al. The role of equatorial undercurrent in sustaining the Eastern Indian Ocean upwelling[J]. Geophysical Research Letters, 2016, 43(12): 6444−6451. doi: 10.1002/2016GL069433
    [118] Zheng Shaojun, Feng Ming, Du Yan, et al. Interannual variability of eddy kinetic energy in the subtropical southeast Indian ocean associated with the El Niño-Southern Oscillation[J]. Journal of Geophysical Research:Oceans, 2018, 123(2): 1048−1061. doi: 10.1002/2017JC013562
    [119] Huang Ke, Wang Dongxiao, Wang Weiqiang, et al. Multi-scale variability of the tropical Indian Ocean circulation system revealed by recent observations[J]. Science China: Earth Sciences, 2018, 61(6): 668−680. doi: 10.1007/s11430-017-9179-x
    [120] Zhuang Wei, Feng Ming, Du Yan, et al. Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports[J]. Journal of Geophysical Research:Oceans, 2013, 118(3): 1302−1315. doi: 10.1002/jgrc.20129
    [121] 杜岩, 张涟漪, 张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243−254.

    Du Yan, Zhang Lianyi, Zhang Yuhong. Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes[J]. Advances in Earth Science, 2019, 34(3): 243−254.
    [122] Peng Shiqiu, Qian Yukun, Lumpkin R, et al. Characteristics of the near-surface currents in the Indian Ocean as deduced from satellite-tracked surface drifters. Part Ⅱ: lagrangian statistics[J]. Journal of Physical Oceanography, 2015, 45(2): 459−477. doi: 10.1175/JPO-D-14-0049.1
    [123] Ma Jie, Lan Jian. Interannual variability of Indian Ocean subtropical mode water subduction rate[J]. Climate Dynamics, 2017, 48(11/12): 4093−4107.
    [124] Liu Qinyan, Feng Ming, Wang Dongxiao, et al. Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data[J]. Journal of Geophysical Research:Oceans, 2015, 120(12): 8270−8282. doi: 10.1002/2015JC011351
    [125] 袁东亮, 周慧, 王铮, 等. 印尼贯穿流源区环流的多尺度变异及其科学重要性[J]. 海洋与湖沼, 2017, 48(6): 1156−1168. doi: 10.11693/hyhz20170800217

    Yuan Dongliang, Zhou Hui, Wang Zheng, et al. The multi-scale variability of the oceancirculation at the Pacific entrance of the Indonesian Throughflow and its scientific importance[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1156−1168. doi: 10.11693/hyhz20170800217
    [126] Yang Lina, Zhou Lei, Li Shujiang, et al. Spreading of the South Pacific tropical water and Antarctic intermediate water over the maritime continent[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4423−4446. doi: 10.1029/2018JC013831
    [127] Zhang Ying, Feng Ming, Du Yan, et al. Strengthened Indonesian Throughflow drives decadal warming in the Southern Indian Ocean[J]. Geophysical Research Letters, 2018, 45(12): 6167−6175.
    [128] Fang Guohong, Susanto D, Soesilo I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6): 946−954. doi: 10.1007/BF02918693
    [129] 刘钦燕, 黄瑞新, 王东晓, 等. 印度尼西亚贯穿流与南海贯穿流的相互调制[J]. 科学通报, 2006, 27(1): 87−94.

    Liu Qinyan, Huang Ruixin, Wang Dongxiao, et al. Covariation of the Indonesian throughflow and South China Sea throughflow associated with the 1976/77 regime shift[J]. Chinese Science Bulletin, 2006, 27(1): 87−94.
    [130] Qu Tangdong, Du Yan, Sasaki H. South China Sea throughflow: A heat and freshwater conveyor[J]. Geophysical Research Letters, 2006, 33(23): L23617.
    [131] Hu Shijian, Sprintall J. Interannual variability of the Indonesian throughflow: The salinity effect[J]. Journal of Geophysical Research-Oceans, 2016, 121(4): 2596−2615. doi: 10.1002/2015JC011495
    [132] Cai Wenju, Wu Lixin, Lengaigne M, et al. Pantropical climate interactions[J]. Science, 2019, 363(6430): eaav4236. doi: 10.1126/science.aav4236
    [133] Sun Cheng, Kucharski F, Li Jianping, et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation[J]. Nature Communications, 2017, 8: 15998. doi: 10.1038/ncomms15998
    [134] Huang Gang, Hu Kaiming, Xie Shangping. Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the Mid-1970s: An atmospheric GCM study[J]. Journal of Climate, 2010, 23(19): 5294−5304. doi: 10.1175/2010JCLI3577.1
    [135] Dong Lu, Zhou Tianjun. The Indian Ocean Sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols[J]. Journal of Climate, 2014, 27(9): 3348−3362. doi: 10.1175/JCLI-D-13-00396.1
    [136] Chen Zesheng, Du Yan, Wen Zhiping, et al. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming[J]. Climate Dynamics, 2018, 50(11/12): 4707−4719. doi: 10.1007/s00382-017-3899-z
    [137] Yuan Dongliang, Wang Jing, Xu Tengfei, et al. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian Throughflow[J]. Journal of Climate, 2011, 24(14): 3593−3608. doi: 10.1175/2011JCLI3649.1
    [138] 李凤岐, 苏育嵩. 海洋水团分析[M]. 青岛: 青岛海洋大学出版社, 2000.

    Li Fengqi, Su Yusong. The Analysis of Water Mass[M]. Qingdao: Qingdao Ocean University Press, 2000.
    [139] 赫崇本, 汪圆祥, 雷宗友, 等. 黄海冷水团的形成及其性质的初步探讨[J]. 海洋与湖沼, 1959, 2(1): 11−15.

    He Chongben, Wang Yuanxiang, Lei Zongyou, et al. A prelimenary study of the formation of Yellow Sea clod mass and its properties[J]. Oceanologia et Limnologia Sinica, 1959, 2(1): 11−15.
    [140] 管秉贤. 黄海冷水团的水温变化以及环流特征的初步分析[J]. 海洋与湖沼, 1963, 5(4): 255−284.

    Guan Bingxian. A preliminary study of the temperature variations and the characteristics of the circulation of the cold water mass of the Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1963, 5(4): 255−284.
    [141] Chu T Y. The oceanography of the surrounding waters of Taiwan[J]. Report of the Institute of Fishery Biology of Ministry of Economic Affairs and National Taiwan University, 1963, 1(4): 29−39.
    [142] 徐斯, 王锡侯, 王仁树. 关于有界水团混合的讨论[J]. 海洋与湖沼, 1965, 7(3): 278−294.

    Xu Si, Wang Xihou, Wang Renshu. A discussion on the mixing of bounded water masses[J]. Oceanologia et Limnologia Sinica, 1965, 7(3): 278−294.
    [143] 苏育嵩, 李凤岐, 王凤钦. 渤、黄、东海水型分布与水系划分[J]. 海洋学报, 1996, 18(6): 1−7.

    Su Yusong, Li Fengqi, Wang Fengqin. Water type distribution and water system category of the Bohai Sea, Yellow Sea and East China Sea[J]. Haiyang Xuebao, 1996, 18(6): 1−7.
    [144] Fan K L. A study of water massses in Taiwan Strait[J]. Acta Oceanographica Taiwanica, 1982, 13: 140−153.
    [145] Jan S, Sheu D D, Kuo H M. Water mass and throughflow transport variability in the Taiwan Strait[J]. Journal of Geophysical Research: Oceans, 2006, 111(C12): C12012.
    [146] 孙湘平. 中国近海及毗邻海域水文概况[M]. 北京: 海洋出版社, 2016.

    Sun Xiangping. Hydrography of China Adjacent Seas and Neighboring Waters[M]. Beijing: China Ocean Press, 2016.
    [147] 熊学军. 中国近海海洋——物理海洋与海洋气象[M]. 北京: 海洋出版社, 2012.

    Xiong Xuejun. Offshore Oceans of China: Physical Oceanography and Ocean Meteorology[M]. Beijing: China Ocean Press, 2012.
    [148] Chen Shengli, Li Yan, Hu Jianyu, et al. Multiparameter cluster analysis of seasonal variation of water masses in the eastern Beibu Gulf[J]. Journal of Oceanography, 2011, 67(6): 709−718. doi: 10.1007/s10872-011-0071-y
    [149] Hu Jianyu, Hong Huasheng, Li Yan, et al. Variable temperature, salinity and water mass structures in the southwestern Taiwan Strait in summer[J]. Continental Shelf Research, 2011, 31(6 Suppl. 1): S13−S23. doi: 10.1016/j.csr.2011.02.003
    [150] Zhu Junying, Shi Jie, Guo Xinyu, et al. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction[J]. Continental Shelf Research, 2017, 152: 14−26.
    [151] 程国胜, 孙佳东, 俎婷婷, 等. 2011年夏季南海北部海区水团分析[J]. 热带海洋学报, 2014, 33(3): 10−16. doi: 10.3969/j.issn.1009-5470.2014.03.002

    Cheng Guosheng, Sun Jiadong, Zu Tingting, et al. Analysis of water masses in the northern South China Sea in summer 2011[J]. Journal of Tropical Oceanography, 2014, 33(3): 10−16. doi: 10.3969/j.issn.1009-5470.2014.03.002
    [152] Zhu Jia, Zheng Quanan, Hu Jianyu, et al. Classification and 3-D distribution of upper layer water masses in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 126−135. doi: 10.1007/s13131-019-1418-2
    [153] 李元龙. 热带西太平洋温跃层水团时空特征及中小尺度海洋过程的作用[D]. 青岛: 中国科学院海洋研究所, 2012.

    Li Yuanlong. Spatial and temporal variations of thermocline water masses in the western tropical pacific ocean and the effect of mesoscale and finescale oceanic processes[D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2012.
    [154] 潘爱军. 北太平洋副热带模态水及其形成机制研究[D]. 青岛: 中国海洋大学, 2004.

    Pan Aijun. Subtropical mode water and its formation mechanism in the North Pacific[D]. Qingdao: Ocean University of China, 2004.
    [155] 王然. 北太平洋副热带模态水潜沉率变异规律及其机制研究[D]. 青岛: 中国科学院海洋研究所, 2016.

    Wang Ran. Research for the characteristics and mechanism of the variations of the north pacific subtropical mode waters subduction rate[D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2016.
    [156] 聂珣炜. 太平洋赤道潜流的水团来源及其输运路径[D]. 青岛: 中国科学院海洋研究所, 2016.

    Nie Xunwei. Water sources of the Pacific Equatorial Undercurrent and their main pathways[D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2016.
    [157] Zhang Linlin, Qu Tangdong. Low-frequency variability of south pacific tropical water from Argo[J]. Geophysical Research Letters, 2014, 41(7): 2441−2446. doi: 10.1002/2014GL059490
    [158] Qu Tangdong, Zhang Linlin, Schneider N. North Atlantic subtropical underwater and its year-to-year variability in annual subduction rate during the Argo period[J]. Journal of Physical Oceanography, 2016, 46(6): 1901−1916. doi: 10.1175/JPO-D-15-0246.1
    [159] 刘成彦. 二十世纪全球海洋潜沉率和浮露率的变化趋势及其机制[D]. 青岛: 中国海洋大学, 2012.

    Liu Chengyan. Long-term changes of subduction and obduction over the global ocean and their mechanisms in the 20th century[D]. Qingdao: Ocean University of China, 2012.
    [160] Fu Yao, Wang Chunzai, Brandt P, et al. Interannual variability of Antarctic intermediate water in the tropical north Atlantic[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 4044−4057.
    [161] 李亚婧, 李颖, 魏泽勋. 南极半岛周边海域水团及水交换的研究[J]. 海洋学报, 2019, 41(7): 1−14. doi: 10.3969/j.issn.0253-4193.2019.07.001

    Li Yajing, Li Ying, Wei Zexun. Study on the properties and exchanges of water masses in the region of Antarctic Peninsula[J]. Haiyang Xuebao, 2019, 41(7): 1−14. doi: 10.3969/j.issn.0253-4193.2019.07.001
    [162] 曹勇, 赵进平. 2011–2014年中国北极物理海洋学的研究进展[J]. 海洋学报, 2015, 37(11): 1−10. doi: 10.3969/j.issn.0253-4193.2015.11.001

    Cao Yong, Zhao Jinping. Progress in Arctic physical oceanography in China during 2011–2014[J]. Haiyang Xuebao, 2015, 37(11): 1−10. doi: 10.3969/j.issn.0253-4193.2015.11.001
    [163] 管秉贤. 中国沿岸的表面海流与风的关系的初步研究[J]. 海洋与湖沼, 1957, 1(1): 95−116.

    Guan Bingxian. A preliminary study on the relationship between the surface currents and the winds along China coast[J]. Oceanologia et Limnologia Sinica, 1957, 1(1): 95−116.
    [164] 中国科学院海洋环流与波动重点实验室. 胡敦欣院士论文选集[M]. 北京: 科学出版社, 2016.

    The Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences. Selected Papers of Academician Hu Dunxin[M]. Beijing: Science Press, 2016.
    [165] Beardsley R C, Limeburner R, Kim K, et al. Lagrangian flow observations in the East China, Yellow and Japan seas[J]. La Mer, 1992, 30(3): 297−314.
    [166] 赵保仁. 黄海冷水团锋面与潮混合[J]. 海洋与湖沼, 1985, 16(6): 451−460.

    Zhao Baoren. The fronts of Huanghai Sea cold water mass included by tidal mixing[J]. Oceanologia et Limnologia Sinica, 1985, 16(6): 451−460.
    [167] Huang Daji, Su Jilan, Backhaus J O. Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea[J]. Continental Shelf Research, 1999, 19(11): 1485−1505. doi: 10.1016/S0278-4343(99)00026-6
    [168] Lü Xingang, Qiao Fangli, Xia Changshui, et al. Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation[J]. Continental Shelf Research, 2010, 30(6): 620−632. doi: 10.1016/j.csr.2009.09.002
    [169] Lin Xiaopei, Yang Jiayan, Guo Jingsong, et al. An asymmetric upwind flow, Yellow Sea Warm Current: 1. New observations in the western Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C4): C04026.
    [170] 翁学传, 王丛敏. 台湾暖流水(团)夏季T–S特征和来源的初步分析[J]. 海洋科学集刊, 1984, 21: 113−133.

    Weng Xuechuan, Wang Congmin. Preliminary analysis of T–S characteristics and sources of Taiwan Warm Water (water mass) in summer[J]. Journal of Marine Science, 1984, 21: 113−133.
    [171] Zhu Jianrong, Chen Changsheng, Ding Pingxing, et al. Does the Taiwan warm current exist in winter?[J]. Geophysical Research Letters, 2004, 31(12): L12302.
    [172] Zhou Feng, Xue Huijie, Huang Daji, et al. Cross-shelf exchange in the shelf of the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1545−1572. doi: 10.1002/2014JC010567
    [173] Huang Daji, Zeng Dingyong, Ni Xiaobo, et al. Alongshore and cross-shore circulations and their response to winter monsoon in the western East China Sea[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2016, 124: 6−18. doi: 10.1016/j.dsr2.2015.01.001
    [174] Wu Hui, Zhu Jianrong, Shen Jian, et al. Tidal modulation on the Changjiang River plume in summer[J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): C08017.
    [175] 李立, 伍伯瑜. 黑潮的南海流套?——南海东北部环流结构探讨[J]. 台湾海峡, 1989, 8(1): 89−95.

    Li Li, Wu Boyu. A Kuroshio loop in South China Sea?——On circulations of the northeastern South China Sea[J]. Journal of Oceanography In Taiwan Strait, 1989, 8(1): 89−95.
    [176] 冯士筰. f-平面上的宽陆架诱导阻尼波[J]. 海洋学报, 1979, 1(2): 177−192.

    Feng Shizuo. Dissipative trapped-waves over a continental shelf with broad width on an f-plane[J]. Haiyang Xuebao, 1979, 1(2): 177−192.
    [177] 陈大可, 苏纪兰. 中国沿岸陆架波的初步研究[J]. 海洋学报, 1987, 9(1): 1−15.

    Chen Dake, Su Jilan. Continental shelf waves along the coasts of China[J]. Haiyang Xuebao, 1987, 9(1): 1−15.
    [178] 王佳, 袁业立, 潘增第. 陆架波的数值研究及分析[J]. 海洋学报, 1988, 10(6): 666−677.

    Wang Jia, Yuan Yeli, Pan Zengdi. Numerical study and analysis of continental shelf waves[J]. Haiyang Xuebao, 1988, 10(6): 666−677.
    [179] Hsueh Y, Pang I C. Coastally trapped long waves in the Yellow Sea[J]. Journal of Physical Oceanography, 1989, 19(5): 612−625. doi: 10.1175/1520-0485(1989)019<0612:CTLWIT>2.0.CO;2
    [180] Ding Yang, Bao Xianwen, Shi Maochong. Characteristics of coastal trapped waves along the northern coast of the South China Sea during year 1990[J]. Ocean Dynamics, 2012, 62(9): 1259−1285. doi: 10.1007/s10236-012-0563-3
    [181] Yin Liping, Qiao Fangli, Zheng Quanan. Coastal-trapped waves in the East China Sea observed by a mooring array in winter 2006[J]. Journal of Physical Oceanography, 2014, 44(2): 576−590. doi: 10.1175/JPO-D-13-07.1
    [182] Li Junyi, Zheng Quanan, Hu Jianyu, et al. A case study of winter storm-induced continental shelf waves in the northern South China Sea in winter 2009[J]. Continental Shelf Research, 2016, 125: 127−135.
    [183] 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [184] 中科院南海海洋研究所. 南中国海海区综合调查报告(Ⅱ)[M]. 北京: 科学出版社, 1985: 183-231.

    South China Sea Institude of Oceanology, Chinese Acadmy of Sciences. Report of comprehensive investigation in the South China Sea (Ⅱ)[M]. Beijing: Science Press, 1985: 183–231.
    [185] 王胄, 陈庆生. 南海北部之暖心涡流—(一)对南海暖涡之初步观测[J]. 台湾大学海洋学刊, 1987, 18: 92−103.

    Wang Zhou, Chen Qingsheng. The warm-core eddy in the northern South China Sea–Ⅰ. Preliminary observations on the warm-core eddy[J]. Acta oceanographica Taiwanica, 1987, 18: 92−103.
    [186] 李立. 南海中尺度海洋现象研究概述[J]. 台湾海峡, 2002, 21(2): 265−274. doi: 10.3969/j.issn.1000-8160.2002.02.021

    Li Li. A review on mesoscale oceanographical phenomena in the South China Sea[J]. Journal of the Oceanography in Taiwan Strait, 2002, 21(2): 265−274. doi: 10.3969/j.issn.1000-8160.2002.02.021
    [187] Wang Guihua, Su Jilan, Chu P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21): 2121. doi: 10.1029/2003GL018532
    [188] Xiu Peng, Chai Fei, Shi Lei, et al. A census of eddy activities in the South China Sea during 1993–2007[J]. Journal of Geophysical Research: Oceans, 2010, 115(C3): C03012.
    [189] Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06018.
    [190] Wang Lei, Gan Jianping. Delving into three-dimensional structure of the West Luzon Eddy in a regional ocean model[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2014, 90: 48−61. doi: 10.1016/j.dsr.2014.04.011
    [191] Hwang C, Chen S A. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 23943−23965. doi: 10.1029/2000JC900092
    [192] Li Jiaxun, Zhang Ren, Jin Baogang. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data[J]. Ocean Science Discussions, 2011, 7(5): 661−669.
    [193] Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05016.
    [194] Lin Xiayan, Dong Changming, Chen Dake, et al. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2015, 99: 46−64. doi: 10.1016/j.dsr.2015.01.007
    [195] Lin Y C, Oey L Y, Wang J, et al. Rossby waves and eddies observed at a temperature mooring in northern South China Sea[J]. Journal of Physical Oceanography, 2016, 46(2): 517−535. doi: 10.1175/JPO-D-15-0094.1
    [196] Shu Yeqiang, Xiu Peng, Xue Huijie, et al. Glider-observed anticyclonic eddy in northern South China Sea[J]. Aquatic Ecosystem Health & Management, 2016, 19(3): 233−241.
    [197] Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6: 24349. doi: 10.1038/srep24349
    [198] Ho C R, Kuo N J, Zheng Quanan, et al. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data[J]. Remote Sensing of Environment, 2000, 71(3): 320−328. doi: 10.1016/S0034-4257(99)00094-2
    [199] Xue Huijie, Chai Fei, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02017.
    [200] Jia Yinglai, Liu Qinyu, Liu Wei. Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait[J]. Journal of Oceanography, 2005, 61(6): 1017−1027. doi: 10.1007/s10872-006-0018-x
    [201] Wang Guihua, Chen Dake, Su Jilan. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726−732. doi: 10.1175/2007JPO3868.1
    [202] Zhuang Wei, Du Yan, Wang Dongxiao, et al. Pathways of mesoscale variability in the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5): 1055−1067. doi: 10.1007/s00343-010-0035-x
    [203] 谢旭丹, 王静, 储小青, 等. 南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1−14.

    Xie Xudan, Wang Jing, Chu Xiaoqing, et al. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea[J]. Haiyang Xuebao, 2018, 40(4): 1−14.
    [204] Zhao Yuanbing, Liang Xiangsan, Gan Jianping. Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 8208−8229. doi: 10.1002/2016JC012483
    [205] Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2017, 39(2): 399−417.
    [206] Chen Zhaohui, Wu Lixin, Qiu Bo, et al. Seasonal variation of the south equatorial current bifurcation off madagascar[J]. Journal of Physical Oceanography, 2014, 44(2): 618−631. doi: 10.1175/JPO-D-13-0147.1
    [207] Qiu Bo. Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory[J]. Journal of Physical Oceanography, 1999, 29(10): 2471−2486. doi: 10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2
    [208] Qiu Bo, Chen Shuiming. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090−2103. doi: 10.1175/JPO2807.1
    [209] Xu Lixiao, Li Peiliang, Xie Shangping, et al. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific[J]. Nature Communications, 2016, 7: 10505. doi: 10.1038/ncomms10505
    [210] Zhang Dongxiao, Lee T N, Jhons W E. The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies[J]. Journal Physical Oceanography, 2001, 31(4): 1054−1074. doi: 10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2
    [211] Zhang Zhengguang, Zhang Yu, Wang Wei, et al. Universal structure of mesoscale eddies in the ocean[J]. Geophysical Research Letters, 2013, 40(14): 3677−3681. doi: 10.1002/grl.50736
    [212] Dong Changming, McWilliams J C, Liu Yu, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5(2): 3294.
    [213] Xu Chi, Shang Xiaodong, Huang Ruixin. Horizontal eddy energy flux in the world oceans diagnosed from altimetry data[J]. Scientific Reports, 2014, 4: 5316.
    [214] Zhang Zhiwei, Zhong Yisen, Tian Jiwei, et al. Estimation of eddy heat transport in the global ocean from Argo data[J]. Acta Oceanologica Sinica, 2014, 33(1): 42−47. doi: 10.1007/s13131-014-0421-x
    [215] Zhang Zhengguang, Wangwei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322−324. doi: 10.1126/science.1252418
    [216] Zhao Jian, Bower A, Yang Jiayan, et al. Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic[J]. Nature Communications, 2018, 9(1): 1124. doi: 10.1038/s41467-018-03134-x
    [217] Cui Wei, Yang Jungang, Yi Ma. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22-year altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 16−27. doi: 10.1007/s13131-016-0945-3
    [218] Duan Yongliang, Liu Hongwei, Yu Weidong, et al. Eddy properties in the Pacific sector of the southern ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 28−34. doi: 10.1007/s13131-016-0946-2
    [219] Li Jiaxun, Wang Guihua, Xue Huijie, et al. A simple predictive model for the eddy propagation trajectory in the northern South China Sea[J]. Ocean Science, 2019, 15(2): 401−412. doi: 10.5194/os-15-401-2019
    [220] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 553−563.

    Ren Shihe, Wang Hui, Liu Na. Review of ocean front in Chinese marginal seas and frontal forecasting[J]. Advances in Earth Science, 2015, 30(5): 553−563.
    [221] 毛汉礼, 甘子钧, 蓝淑芳. 长江冲淡水及其混合问题的初步探讨[J]. 海洋与湖沼, 1963, 5(3): 183−206.

    Mao Hanli, Gan Zijun, Lan Shufang. A preliminary study of the Yangtze diluted water and its mixing processes[J]. Oceanologia et Limnologia Sinica, 1963, 5(3): 183−206.
    [222] 汤毓祥, 苗育田. 东海黑潮锋及锋面涡[M]//国家海洋局科技司. 黑潮调查研究综合报告. 北京: 海洋出版社, 1995: 22–24.

    Tang Yuxiang, Miao Yutian. Kuroshio front and frontal eddies in the East China Sea[M]//Department of Science and Technology, State Oceanic Administration. Comprehensive Report of Kuroshio Survey and Research. Beijing: China Ocean Press, 1995: 22–24.
    [223] Wong G T F, Chao S Y, Li Yuanhui, et al. The Kuroshio Edge Exchange Processes (KEEP) study—an introduction to hypotheses and highlights[J]. Continental Shelf Research, 2000, 20(4/5): 335−347. doi: 10.1016/S0278-4343(99)00075-8
    [224] Chen Dake, Liu W T, Tang Wenqing, et al. Air-sea interaction at an oceanic front: Implications for frontogenesis and primary production[J]. Geophysical Research Letters, 2003, 30(14): 1745.
    [225] 刘泽. 中国近海锋面时空特征研究及现场观测分析[D]. 青岛: 中国科学院海洋研究所, 2012.

    Liu Ze. The spatio-temporal variability of oceanic fronts offshore China seas and analysis of marine observations[D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2012.
    [226] Chen C T A, Huang M H. A mid-depth front separating the South China Sea water and the Philippine Sea water[J]. Journal of Oceanography, 1996, 52(1): 17−25. doi: 10.1007/BF02236530
    [227] Chang Yi, Lee M A, Shimada T, et al. Wintertime high-resolution features of sea surface temperature and chlorophyll-a fields associated with oceanic fronts in the southern East China Sea[J]. International Journal of Remote Sensing, 2008, 29(21): 6249−6261. doi: 10.1080/01431160802175462
    [228] Lü Xingang, Qiao Fangli, Wang Guansuo, et al. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms[J]. Geophysical Research Letters, 2008, 35(2): L02604.
    [229] 尹逊福, 孔祥德, 潘惠周. 东海西部陆架海区潮内波特征的初步分析[J]. 海洋学报, 1986, 8(6): 722−788.

    Yin Xunfu, Kong Xiangde, Pan Huizhou. Preliminary analysis of characteristics of internal tidal waves over the western continental shelf of the East China Sea[J]. Haiyang Xuebao, 1986, 8(6): 722−788.
    [230] 束星北, 耿世江, 顾学俊, 等. 利用海流观测资料检验近海内波[J]. 海洋学报, 1985, 7(5): 535−538.

    Shu Xingbei, Geng Shijiang, Gu Xuejun, et al. Using ocean current observations for distinguishing internal waves in the offshore waters[J]. Haiyang Xuebao, 1985, 7(5): 535−538.
    [231] 赵俊生, 耿世江, 王祯祥, 等. 近海潮成内波波包结构的分析[J]. 海洋学报, 1987, 9(2): 137−144.

    Zhao Junsheng, Geng Shijiang, Wang Zhenxiang, et al. Analysis of the packet structure of the tide-generated internal wave in the offshore waters[J]. Haiyang Xuebao, 1987, 9(2): 137−144.
    [232] 方欣华, 鲍献文, 张玉琳, 等. 南海西南海域的内波和细结构[J]. 海洋与湖沼, 1994, 25(1): 1−8. doi: 10.3321/j.issn:0029-814X.1994.01.001

    Fang Xinhua, Bao Xianwen, Zhang Yulin, et al. Internal waves and fine structure in the southwestern area of the South China Sea[J]. Oceanologia et Limnologia Sinica, 1994, 25(1): 1−8. doi: 10.3321/j.issn:0029-814X.1994.01.001
    [233] 邱章, 徐锡祯, 龙小敏. 南海北部-观测点内潮特征的初步分析[J]. 热带海洋, 1996, 15(4): 63−67.

    Qiu Zhang, Xu Xizhen, Long Xiaomin. A preliminary analysis on internal tide characteristics at an observation point in northern South China Sea[J]. Tropic Oceanology, 1996, 15(4): 63−67.
    [234] 鄢锦, 张仁和, 周士弘, 等. 黄海中部内波特征及其引起的声起伏[J]. 声学学报, 1993, 23(3): 281−287.

    Yan Jin, Zhang Renhe, Zhou Shihong, et al. Characterizations of the internal waves and their effect on the sound transmission in the midst of the Yellow Sea[J]. Acta Acustica, 1993, 23(3): 281−287.
    [235] 徐肇廷, 方欣华, 汪一明. 偶板造波机生成的内波振幅-理论与实验的比较[J]. 水动力学研究与进展, 1989, 4(4): 89−95.

    Xu Zhaoting, Fang Xinhua, Wang Yiming. Amplitudes of internal waves generated by even-paddle wave-makers: A comparison between theory and a laboratory experiment[J]. Journal of Hydrodynamics, 1989, 4(4): 89−95.
    [236] 蔡树群, 甘子钧. 内波频散关系的一种数值解法[J]. 热带海洋, 1995, 14(1): 22−29.

    Cai Shuqun, Gan Zijun. A numerical method of internal waves dispersion relation[J]. Tropic Oceanology, 1995, 14(1): 22−29.
    [237] Tian Jiwei, Zhou Lei, Zhang Xiaoqian, et al. Estimates of M2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data[J]. Geophysical Research Letters, 2003, 30(17): 1889.
    [238] Hsu M K, Liu A K, Liu Cheng. A study of internal waves in the China seas and Yellow Sea using SAR[J]. Continental Shelf Research, 2000, 20(4/5): 389−410. doi: 10.1016/S0278-4343(99)00078-3
    [239] Meng Junmin, Zhang Jie, Song Wei, et al. SAR imagery in studying internal waves in the northern South China Sea[C]//Proceedings of SPIE 4892. Ocean Remote Sensing and Applications. Hangzhou: SPIE, 2003: 440-449.
    [240] Zheng Quanan. Satellite SAR Detection of Sub-Mesoscale Ocean Dynamic Processes[M]. Singapore:World Scientific Publishing Co. Inc., 2017.
    [241] Yang Y J, Tang T Y, Chang M H, et al. Solitons northeast of Tung-Sha island during the ASIAEX pilot studies[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1182−1199. doi: 10.1109/JOE.2004.841424
    [242] Chang M H, Lien R C, Tang T Y, et al. Energy flux of nonlinear internal waves in northern South China Sea[J]. Geophysical Research Letters, 2006, 33(3): L03607.
    [243] Yang Y J, Fang Y C, Chang M H, et al. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): C10003.
    [244] Du Tao, Tseng Y H, Yan Xiaohai. Impacts of tidal currents and Kuroshio intrusion on the generation of nonlinear internal waves in Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08015.
    [245] Chen Zhiwei, Nie Yuhua, Xie Jieshuo, et al. Generation of internal solitary waves over a large sill: From Knight Inlet to Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1555−1573. doi: 10.1002/2016JC012206
    [246] Guan Shoude, Zhao Wei, Huthnance J, et al. Observed upper ocean response to Typhoon Megi (2010) in the Northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2014, 119(5): 3134−3157. doi: 10.1002/2013JC009661
    [247] Dong Jihai, Zhao Wei, Chen Hongtao, et al. Asymmetry of internal waves and its effects on the ecological environment observed in the northern South China Sea[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2015, 98: 94−101. doi: 10.1016/j.dsr.2015.01.003
    [248] Huang Xiaodong, Zhang Zhiwei, Zhang Xiaojiang, et al. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations[J]. Journal of Physical Oceanography, 2017, 47(7): 1539−1554. doi: 10.1175/JPO-D-16-0111.1
    [249] Huang Xiaodong, Wang Zhaoyun, Zhang Zhiwei. Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation Results in the northern South China Sea[J]. Journal Physical Oceanography, 2018, 48(8): 1749−1770. doi: 10.1175/JPO-D-17-0209.1
    [250] Zhang Xiaojiang, Huang Xiaodong, Zhang Zhiwei, et al. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: Impacts of seasonal stratification, mesoscale eddies, and internal tides[J]. Journal of Physical Oceanography, 2018, 48(6): 1349−1365. doi: 10.1175/JPO-D-17-0069.1
    [251] Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 197−211. doi: 10.1029/2012JC008212
    [252] Liu Junliang, He Yinghui, Wang Dongxiao, et al. Observed enhanced internal tides in winter near the Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6637−6652. doi: 10.1002/2015JC011131
    [253] Shang Xiaodong, Liu Qian, Xie Xiaohui, et al. Characteristics and seasonal variability of internal tides in the southern South China Sea[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2015, 98: 43−52. doi: 10.1016/j.dsr.2014.12.005
    [254] Chen Liang, Zheng Quanan, Xiong Xuejun, et al. Dynamic and statistical features of internal solitary waves on the continental slope in the northern South China Sea derived from mooring observations[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 4078−4097.
    [255] Li Qiang, Farmer D M. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea[J]. Journal Physical Oceanography, 2011, 41(7): 1345−1363. doi: 10.1175/2011JPO4587.1
    [256] Xie Jieshuo, He Yinghui, Chen Zhiwu, et al. Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea[J]. Journal of Physical Oceanography, 2015, 45(12): 2959−2978. doi: 10.1175/JPO-D-15-0029.1
    [257] Xie Jieshuo, He Yinghui, Lü Haibin, et al. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin[J]. Geophysical Research Letters, 2016, 43(14): 7617−7624. doi: 10.1002/2016GL070093
    [258] Xu Zhenhua, Liu Kun, Yin Baoshu, et al. Long-range propagation and associated variability of internal tides in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 8268−8286. doi: 10.1002/2016JC012105
    [259] Guan Yuping, Huang Ruixin. Stommel’s box model of thermohaline circulation revisited: The role of mechanical energy supporting mixing and the wind-driven Gyration[J]. Journal of Physical Oceanography, 2008, 8(4): 909−917.
    [260] 沈阳, 管玉平. 基于能量约束的两层模型中热盐环流的基本特性[J]. 中国科学: 地球科学, 2015, 58(8): 1397−1403.

    Shen Yang, Guan Yuping. Feature of thermohaline circulation in two-layer conceptual model based on energy constraint[J]. Science China: Earth Sciences, 2015, 58(8): 1397−1403.
    [261] 魏皓, 武建平, 张平. 海洋湍流模式应用研究[J]. 青岛海洋大学学报, 2001, 31(1): 7−13. doi: 10.3969/j.issn.1672-335X.2001.01.001

    Wei Hao, Wu Jianping, Zhang Ping. Review on turbulence closure models in ocean hydrodynamics[J]. Journal of Ocean University of Qingdao, 2001, 31(1): 7−13. doi: 10.3969/j.issn.1672-335X.2001.01.001
    [262] 魏皓, 冯士筰, 武建平, 等. 齐次湍流动能输运方程封闭模型在浅海动力学中的应用[J]. 青岛海洋大学学报, 2001, 31(6): 821−827. doi: 10.3969/j.issn.1672-5174.2001.06.003

    Wei Hao, Feng Shizuo, Wu Jianping, et al. Application of homogeneous k-equation turbulent closure model in the coastal sea[J]. Journal of Ocean University of Qingdao, 2001, 31(6): 821−827. doi: 10.3969/j.issn.1672-5174.2001.06.003
    [263] 徐肇廷, 楼菁, 鹿有余. 正压浅海湍流运动的雷诺应力封闭模型[J]. 青岛海洋大学学报, 1991, 21(3): 1−8.

    Xu Zhaoting, Lou Jing, Lu Youyu. A reynolds stress closure model for the turbulence of barotropic shallow water[J]. Journal of Ocean University of Qingdao, 1991, 21(3): 1−8.
    [264] Wang Lei, Jansen M, Abernathey R. Eddy phase speeds in a two-layer model of quasigeostrophic baroclinic turbulence with applications to ocean observations[J]. Journal of Physical Oceanography, 2016, 46(6): 1963−1985. doi: 10.1175/JPO-D-15-0192.1
    [265] Chen Dake, Rothstein L M, Busalacchi A J. A hybrid vertical mixing scheme and its application to tropical ocean models[J]. Journal of Physical Oceanography, 1994, 24(10): 2156−2179. doi: 10.1175/1520-0485(1994)024<2156:AHVMSA>2.0.CO;2
    [266] Huang Chuanjiang, Qiao Fangli, Song Zhenya, et al. Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme[J]. Journal of Geophysical Research Oceans, 2011, 116(C1): C01007.
    [267] 蔡树群, 王文质. 大涡模拟及其在海洋湍流数值模拟中的应用[J]. 海洋通报, 1999, 18(5): 69−75.

    Cai Shuqun, Wang Wenzhi. Large eddy simulation and its applications to the numerical simulation of turbulence in the ocean[J]. Marine Science Bulletin, 1999, 18(5): 69−75.
    [268] Li Shuang, Song Jinbao, He Hailun, et al. Large eddy simulation of turbulence in ocean surface boundary layer at Zhangzi Island offshore[J]. Acta Oceanologica Sinica, 2013, 32(7): 8−13. doi: 10.1007/s13131-013-0326-0
    [269] Liu Zhiyu, Thorpe S A, Smyth W D. Instability and hydraulics of turbulent stratified shear flows[J]. Journal of Fluid Mechanics, 2012, 695(3): 235−256.
    [270] Thorpe S A, Liu Zhiyu. Marginal instability?[J]. Journal of Physical Oceanography, 2009, 39(9): 2373−2381. doi: 10.1175/2009JPO4153.1
    [271] 李文娟, 冷秀华, 魏泽勋, 等. 海洋湍流的测量及相关分析[J]. 海洋科学, 1996, 20(5): 34−38.

    Li Wenjuan, Leng Xiuhua, Wei Zexun, et al. The measurement in the oceanic turbulence and correlation analysis[J]. Marine Sciences, 1996, 20(5): 34−38.
    [272] 周磊, 田纪伟, 张效谦. 东海陆架坡折小尺度过程观测[J]. 科学通报, 2005, 50(16): 1784−1788.

    Zhou Lei, Tian Jiwei, Zhang Xiaoqian. Observation of small-scale processes over shelf break in the East China Sea[J]. Chinese Science Bulletin, 2005, 50(16): 1784−1788.
    [273] Lien R C, Sanford B, TSAI W T. Observations of urbulence mixing and vorticity in a littoral surface boundary layer[J]. Journal of Physical Oceanography, 2007, 38(3): 648−669.
    [274] 魏传杰, 于非, 郭景松, 等. 黄海西部海洋湍流的季节变化特征分析[J]. 海洋与湖沼, 2014, 45(1): 166−171.

    Wei Chuanjie, Yu Fei, Guo Jingsong, et al. Seasonal variation of ocean turbulence in the western Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2014, 45(1): 166−171.
    [275] 连强, 刘志宇. 强潮海湾中的湍流与混合: 观测与数值模拟[J]. 中国科学: 地球科学, 2015, 45(7): 1043−1053.

    Lian Qiang, Liu Zhiyu. Turbulence and mixing in a freshwater-influenced tidal bay: Observations and numerical modeling[J]. Science China: Earth Sciences, 2015, 45(7): 1043−1053.
    [276] Sun Hui, Wang Qingye. Microstructure observations in the upper layer of the South China Sea[J]. Journal of Oceanography, 2016, 72(5): 777−786. doi: 10.1007/s10872-016-0371-3
    [277] 周宇, 陈桂英, 尚晓东, 等. 南海中部上层海洋湍流混合的空间分布特征及参数化模型[J]. 海洋学报, 2015, 37(5): 24−33. doi: 10.3969/j.issn.0253-4193.2015.05.003

    Zhou Yu, Chen Guiying, Shang Xiaodong, et al. Spatial variation and parameterization model of upper turbulent mixing in the central South China Sea[J]. Haiyang xuebao, 2015, 37(5): 24−33. doi: 10.3969/j.issn.0253-4193.2015.05.003
    [278] Liu Zhiyu, Lian Qiang, Zhang Fangtao, et al. Weak thermocline mixing in the North Pacific low-latitude western boundary current system[J]. Geophysical Research Letters, 2017, 44(20): 10530−10539. doi: 10.1002/2017GL075210
    [279] 田川. 深海湍流混合长期连续观测技术与应用研究[D]. 天津: 天津大学, 2012.

    Tian Chuan. Study on long-term turbulence monitoring technique and its application in deep-sea mixing research[D]. Tianjin: Tianjin University, 2012.
    [280] Liu Jiuliang, Liang Junhong, McWilliams J C, et al. Effect of planetary rotation on oceanic surface boundary layer turbulence[J]. Journal of Physical Oceanography, 2018, 48(9): 2057−2080. doi: 10.1175/JPO-D-17-0150.1
    [281] Li Shuang, Song Jinbao, He Hailun. Large eddy simulation of the rotation effect on the ocean turbulence kinetic energy budget in the surface mixed layer[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(5): 1198−1206. doi: 10.1007/s00343-014-3188-1
    [282] Wang Dong, Kukulka T, Reichl B G, et al. Interaction of Langmuir turbulence and inertial currents in the ocean surface boundary layer under tropical cyclones[J]. Journal of Physical Oceanography, 2018, 48(9): 1921−1940. doi: 10.1175/JPO-D-17-0258.1
    [283] Zhang Xuefeng, Chu P C, Li Wei, et al. Impact of Langmuir turbulence on the thermal response of the ocean surface mixed layer to supertyphoon Haitang (2005)[J]. Journal of Physical Oceanography, 2018, 48(8): 1651−1674. doi: 10.1175/JPO-D-17-0132.1
    [284] Song Dehai, Wang Xiaohua. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009: 2. Numerical simulations[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5568–5590.
    [285] Yang Wei, Wei Hao, Zhao Liang. Observations of tidal straining within two different ocean environments in the East China Sea: Stratification and near-bottom turbulence[J]. Journal of Geophysical Research: Oceans, 2017, 22(11): 8876−8893.
    [286] 刘志宇. 强潮驱陆架海中的湍流与混合[D]. 青岛: 中国海洋大学, 2009.

    Liu Zhiyu. Turbulence and mixing in tidally energetic shelf seas[D]. Qingdao: Ocean University of China, 2009.
    [287] Bian Changwei, Liu Zhiyu, Huang Yongxiang, et al. On estimating turbulent Reynolds stress in wavy aquatic environment[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 3060−3071. doi: 10.1002/2017JC013230
    [288] 张莹, 赵进平. 加拿大海盆冰下表层海水湍扩散系数估计[J]. 中国海洋大学学报, 2007, 37(5): 695−703.

    Zhang Ying, Zhao Jinping. The estimation of vertical turbulent diffusivity in the surface layer in the Canada basin[J]. Periodical of Ocean University of China, 2007, 37(5): 695−703.
    [289] 刘国昕, 赵进平. 影响北极冰下海洋Ekman漂流垂直结构与深度因素的研究[J]. 中国海洋大学学报, 2013, 43(2): 1−7.

    Liu Guoxin, Zhao Jinping. The influence of stratification on Ekman drift under sea ice[J]. Periodical of Ocean University of China, 2013, 43(2): 1−7.
    [290] Zhang Zhiwei, Qiu Bo, Tian Jiwei, et al. Latitude-dependent finescale turbulent shear generations in the Pacific tropical-Extratropical upper ocean[J]. Nature Communications, 2018, 9: 4086. doi: 10.1038/s41467-018-06260-8
    [291] Xu Yongsheng, Fu L L. Global variability of the wavenumber spectrum of oceanic mesoscale turbulence[J]. Journal of Physical Oceanography, 2011, 41(4): 802−809. doi: 10.1175/2010JPO4558.1
    [292] Zhang Y, Guan Yuping. Striations in marginal seas and the Mediterranean Sea[J]. Geophysical Research Letters, 2019, 46(5): 2726−2733. doi: 10.1029/2018GL081050
    [293] Lozovatsky I, Liu Zhiyu, Wei Hao, et al. Tides and mixing in the northwestern East China Sea, Part Ⅱ: Near-bottom turbulence[J]. Continental Shelf Research, 2008, 28(2): 338−350. doi: 10.1016/j.csr.2007.08.007
    [294] 杨丽芬, 田纪伟, 谢玲玲. 南海北部陆坡区混合过程观测[J]. 海洋科学, 2008, 32(12): 10−16.

    Yang Lifen, Tian Jiwei, Xie Lingling. Observation of mixing processes over the continental slope of the northern South China Sea[J]. Marine Sciences, 2008, 32(12): 10−16.
    [295] Tian Jiwei, Yang Qingxuan, Zhao Wei. Enhanced diapycnal mixing in the South China Sea[J]. Journal of Physical Oceanography, 2009, 39(12): 3191−3203. doi: 10.1175/2009JPO3899.1
    [296] Liu Zhiyu, Lozovatsky I. Upper pycnocline turbulence in the northern South China Sea[J]. Chinese Science Bulletin, 2012, 57(18): 2302−2306. doi: 10.1007/s11434-012-5137-8
    [297] Lozovatsky I, Liu Zhiyu, Fernando H J S, et al. The TKE dissipation rate in the northern South China Sea[J]. Ocean Dynamics, 2013, 63(11/12): 1189−1201. doi: 10.1007/s10236-013-0656-7
    [298] Sun Hui, Yang Qingxuan, Zhao Wei, et al. Temporal variability of diapycnal mixing in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8840−8848. doi: 10.1002/2016JC012044
    [299] Liang Changrong, Chen Guiying, Shang Xiaodong. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea[J]. Ocean Dynamics, 2017, 67(5): 597−609. doi: 10.1007/s10236-017-1051-6
    [300] Liu Yongzheng, Zhao Jing, Wu Lixin. The variation of turbulent diapycnal mixing at 18 N in the South China Sea stirred by wind stress[J]. Acta Oceanologica Sinica, 2017, 36(5): 26−30. doi: 10.1007/s13131-017-1067-2
    [301] Shang Xiaodong, Liang Changrong, Chen Guiying. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea[J]. Ocean Science, 2017, 13(3): 503−519.
    [302] Yang Qingxuan, Nikurashin M, Sasaki H, et al. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea[J]. Scientific reports, 2019, 9(1): 556. doi: 10.1038/s41598-018-36610-x
    [303] Li Mingming, Xie Lingling, Zong Xiaolong, et al. The cruise observation of turbulent mixing in the upwelling region east of Hainan Island in the summer of 2012[J]. Acta Oceanologica Sinica, 2018, 37(9): 1−12. doi: 10.1007/s13131-018-1260-y
    [304] Zhang Shuwen, Xie Lingling, Cao Ruixue, et al. Observation of upper-ocean mixing in the region west of the luzon strait in spring[J]. Journal of Coastal Research, 2012, 28(5): 1208−1213. doi: 10.2112/JCOASTRES-D-11-00145.1
    [305] Tseng R S, Shao H J, Chang Y C, et al. Turbulent mixing of the Kuroshio waters Southeast of Taiwan[J]. Kuroshio Science, 2012, 6(1): 27−34.
    [306] Liu Chuanyu, Köhl A, Liu Zhiyu, et al. Deep-reaching thermocline mixing in the equatorial Pacific cold tongue[J]. Nature Communications, 2016, 7: 11576. doi: 10.1038/ncomms11576
    [307] Wu Lixin, Jing Zhao, Riser S, et al. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats[J]. Nature Geoscience, 2011, 4(6): 363−366. doi: 10.1038/ngeo1156
    [308] Huang Chuanjiang, Qiao Fangli. Wave-turbulence interaction and its induced mixing in the upper ocean[J]. Journal of Geophysical Research, 2010, 115(C4): C04026. doi: 10.1029/2009JC005853
    [309] Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2934−2944. doi: 10.1002/2017JC013038
    [310] Sun Qun, Guan Changlong, Song Jinbao. Wave breaking on turbulent energy budget in the ocean surface mixed layer[J]. Chinese Journal of Oceanology and Limnology, 2008, 26(1): 9−13. doi: 10.1007/s00343-008-0009-4
    [311] Wang Yonggang, Qiao Fangli, Fang Guohong, et al. Application of wave-induced vertical mixing to the K profile parameterization scheme[J]. Journal of Geophysical Research: Oceans, 2010, 115(C9): C09014.
    [312] Li Yan, Qiao Fangli, Yin Xunqiang, et al. The improvement of the one-dimensional Mellor-Yamada and K-profile parameterization turbulence schemes with the non-breaking surface wave-induced vertical mixing[J]. Acta Oceanologica Sinica, 2013, 32(9): 62−73. doi: 10.1007/s13131-013-0353-x
    [313] Song Zhenya, Qiao Fangli, Song Yajuan. Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: An amendment to tropical bias[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J26. doi: 10.1029/2012JC007931
    [314] Wang Shizhu, Wang Qiang, Shu Qi, et al. Improving the upper-ocean temperature in an ocean climate model (FESOM 1.4): Shortwave penetration versus mixing induced by nonbreaking surface waves[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(2): 545−557. doi: 10.1029/2018MS001494
    [315] Zhao Biao, Qiao Fangli, Wang Guansuo. The effects of the non-breaking surface wave-induced vertical mixing on the forecast of tropical cyclone tracks[J]. Chinese science bulletin, 2014, 59(24): 3075−3084. doi: 10.1007/s11434-014-0255-0
    [316] Li Shuang, Song Jinbao, Fan Wei. Effect of Langmuir circulation on upper ocean mixing in the South China Sea[J]. Acta Oceanologica Sinica, 2013, 32(3): 28−33. doi: 10.1007/s13131-013-0285-5
    [317] Xie Lingling, Li Mingming, Li Min. Observational analysis of the double-diffusive convection in the deep Canada Basin[J]. Acta Oceanologica Sinica, 2015, 34(11): 71−79. doi: 10.1007/s13131-015-0750-4
    [318] Shao Huanjie, Tseng Ruoshan, Lien Renchieh, et al. Turbulent mixing on sloping bottom of an energetic tidal channel[J]. Continental Shelf Research, 2018, 166: 44−53. doi: 10.1016/j.csr.2018.06.012
    [319] 林姚坤, 包芸, 陈起程, 等. 夏季长江河口层化与湍流混合特征分析[J]. 热带海洋学报, 2018, 37(5): 33−39.

    Lin Yaokun, Bao Yun, Chen Qicheng, et al. Summertime stratification and turbulent mixing in the Yangtze Estuary[J]. Journal of Tropical Oceanography, 2018, 37(5): 33−39.
    [320] Wang Xiaowei, Peng Shiqiu, Liu Zhiyu, et al. Tidal mixing in the South China Sea: An estimate based on the internal tide energetics[J]. Journal of Physical Oceanography, 2016, 46(1): 107−124. doi: 10.1175/JPO-D-15-0082.1
    [321] Liu Yongzheng, Jing Zhao, Wu Lixin. Wind power on oceanic near-inertial oscillations in the global ocean estimated from surface drifters[J]. Geophysical Research Letters, 2019, 46(5): 2647−2653.
    [322] Xu Chi, Shang Xiaodong, Huang Ruixin. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data[J]. Ocean Dynamics, 2011, 61(4): 525−541. doi: 10.1007/s10236-011-0377-8
    [323] Yang Guangbing, Zheng Quanan, Yuan Yeli, et al. Effect of a mesoscale eddy on surface turbulence at the Kuroshio Front in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 1763−1777. doi: 10.1029/2018JC014672
    [324] Zhu Jia, Hu Jianyu, Liu Zhiyu. On summer stratification and tidal mixing in the Taiwan Strait[J]. Frontiers of Earth Science, 2013, 7(2): 141−150. doi: 10.1007/s11707-013-0355-1
    [325] Liang Changrong, Shang Xiaodong, Chen Guiying. The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(3): 36−44. doi: 10.1007/s13131-019-1397-3
    [326] Jing Zhao, Wu Lixin, Ma Xiaohui. Improve the simulations of near-inertial internal waves in the ocean general circulation models[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(10): 1960−1970. doi: 10.1175/JTECH-D-15-0046.1
    [327] Li Min, Xie Lingling, Yang Qingxuan, et al. Impact of eddies on ocean diapycnal mixing in Gulf Stream region[J]. Science China: Earth Sciences, 2014, 57(6): 1407−1414. doi: 10.1007/s11430-013-4708-0
    [328] 毛华斌, 陈桂英, 尚晓东, 等. 西沙海域内潮与近惯性内波的相互作用[J]. 地球物理学报, 2013, 56(2): 592−600. doi: 10.6038/cjg20130222

    Mao Huabin, Chen Guiying, Shang Xiaodong, et al. Interaction between internal tides and near-inertial waves at Xisha area[J]. Chinese Journal of Geophysics, 2013, 56(2): 592−600. doi: 10.6038/cjg20130222
    [329] Xie Xiaohui, Shang Xiaodong, van Haren H, et al. Observations of enhanced nonlinear instability in the surface reflection of internal tides[J]. Geophysical Research Letters, 2013, 40(8): 1580−1586. doi: 10.1002/grl.50322
    [330] Guan Shoude, Liu Ze, Song Jinbao, et al. Upper ocean response to Super Typhoon Tembin (2012) explored using multiplatform satellites and Argo float observations[J]. International Journal of Remote Sensing, 2017, 38(18): 5150−5167. doi: 10.1080/01431161.2017.1335911
    [331] Liang Changrong, Chen Guiying, Shang Xiaodong, et al. Observation of enhanced nonlinear interactions after severe tropical storm Chanchu (2004) in the western South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3837−3848.
    [332] Jing Zhao, Chang Ping, DiMarco S F, et al. Observed energy exchange between low-frequency flows and internal waves in the Gulf of Mexico[J]. Journal of Physical Oceanography, 2018, 48(4): 995−1008. doi: 10.1175/JPO-D-17-0263.1
    [333] Wang Xiaowei, Liu Zhiyu, Peng Shiqiu. Impact of tidal mixing on water mass transformation and circulation in the South China Sea[J]. Journal of Physical Oceanography, 2017, 47(2): 419−432. doi: 10.1175/JPO-D-16-0171.1
    [334] Xie Xiaohui, Liu Qian, Zhao Zhongxiang, et al. Deep-sea currents driven by breaking internal tides on the continental slope[J]. Geophysical Research Letters, 2018, 45(12): 6160−6166.
    [335] Du Chuanjun, Liu Zhiyu, Kao S J, et al. Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: the South China Sea[J]. Geophysical Research Letters, 2017, 44(22): 11510−11518.
    [336] Yuan Ye, Wei Hao, Zhao Liang, et al. Implications of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer: A field study in the western Yellow Sea, China[J]. Marine Geology, 2009, 263(1/4): 87−96. doi: 10.1016/j.margeo.2009.03.023
    [337] Zhang Xuehong, Liang Xinzhong. A numerical world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1989, 6(1): 44−61. doi: 10.1007/BF02656917
    [338] Jin Xiangze, Zhang Xuehong, Zhou Tianjun. Fundamental framework and experiments of the third generation of IAP/ LASG world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1999, 16(2): 197−215. doi: 10.1007/BF02973082
    [339] Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. LASG/IAP climate system ocean model version 2: LICOM2[M]//Zhou T, Yu Y, Liu Y, et al. Flexible Global Ocean-Atmosphere-Land System Model. Berlin, Heidelberg: Springer, 2014: 15–26.
    [340] 俞永强, 唐绍磊, 刘海龙, 等. 任意正交曲线坐标系下的海洋模式动力框架的发展与评估[J]. 大气科学, 2018, 42(4): 877−889.

    Yu Yongqiang, Tang Shaolei, Liu Hailong, et al. Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 877−889.
    [341] Zhang Xuehong, Bao N, Yu R C, et al. Coupling scheme experiments based on an atmospheric and an oceanic GCM[J]. Chinese Journal of Atmospheric Sciences, 1992, 16(2): 129−144.
    [342] 吴国雄, 张学洪, 刘辉, 等. LASG全球海洋–大气–陆面系统模式(GOALS/LASG)及其模拟研究[J]. 应用气象学报, 1997, 8(S1): 15−28.

    Wu Guoxiong, Zhang Xuehong, Liu Hui, et al. Global ocean atmosphere land system model of LASG(GOALS/LASG) and its performance in simulation study[J]. Quarterly Journal of Applied Meteorology, 1997, 8(S1): 15−28.
    [343] 96-908科技项目办公室, 项目执行专家组. 短期气候预测业务动力模式的研制[M]. 北京: 气象出版社, 2000.

    The Project Office of Expert Group on 96-908 Science and Technology Project Implementation. Development of Operational Dynamics Model for Short-term Climate Prediction[M]. Beijing: China Meteorological Press, 2000.
    [344] Yu Yongqiang, Yu Rucong, Zhang Xuehong, et al. A flexible coupled ocean-atmosphere general circulation model[J]. Advances in Atmospheric Sciences, 2002, 19(1): 169−190. doi: 10.1007/s00376-002-0042-8
    [345] 张雅乐, 俞永强. FGOALS模式4个版本太平洋年代际气候变率模拟的比较[J]. 大气科学, 2016, 40(01): 176−190.

    Zhang Yale, Yu Yongqiang. Comparison of Pacific interdecadal variability simulated by four versions of the LASG/IAP flexible global ocean-atmosphere-land system model[J]. Chinese Journal of Atmospheric Science, 2016, 40(01): 176−190.
    [346] Shi Junqiang, Yin Xunqiang, Shu Qi, et al. Evaluation on data assimilation of a global high resolution wave-tide-circulation coupled model using the tropical Pacific TAO buoy observations[J]. Acta Oceanologica Sinica, 2018, 37(3): 8−20. doi: 10.1007/s13131-018-1196-2
    [347] Li Lijuan, Lin Pengfei, Yu Yongqiang, et al. The flexible global ocean-atmosphere-land system model, Grid-point version 2: FGOALS-g2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 543−560. doi: 10.1007/s00376-012-2140-6
    [348] Bao Qing, Lin Pengfei, Zhou Tianjun, et al. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 561−576. doi: 10.1007/s00376-012-2113-9
    [349] Wu Tongwen, Song Lianchun, Li Weiping, et al. An overview of BCC climate system model development and application for climate change studies[J]. Journal of Meteorological Research, 2014, 28(1): 34−56.
    [350] Wu Hui, Zhu Jianrong. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary[J]. Ocean Modelling, 2010, 33(1/2): 33−51. doi: 10.1016/j.ocemod.2009.12.001
    [351] Hu Yong, Huang Xiaomeng, Baker A H, et al. Improving the scalability of the ocean barotropic solver in the community earth system model[C]//International Conference for High Performance Computing, Networking, Storage and Analysis. Austin, Texas: ACM, 2015.
    [352] 赵伟, 宋振亚, 乔方利, 等. 基于非规则类矩形剖分的高效并行海浪数值模式[J]. 中国科学: 地球科学, 2014, 44(5): 1049−1058.

    Zhao Wei, Song Zhenya, Qiao Fangli, et al. High efficient parallel numerical surface wave model based on an irregular quasi-rectangular domain decomposition scheme[J]. Science China: Earth Sciences, 2014, 44(5): 1049−1058.
    [353] 韩桂军, 李冬, 马继瑞, 等. 数据同化在海洋数值产品制作及预报中的应用研究[J]. 海洋通报, 2000, 18(5): 54−62.

    Han Guijun, Li Dong, Ma Jirui,et al. A study on the application of data assimilation in numerical products and prediction of oceanography[J]. Marine Science Bulletin, 2000, 18(5): 54−62.
    [354] 吕咸青, 刘文剑. 数据同化中的伴随方法及其有关问题的研究[J]. 海洋科学, 2001, 25(3): 44−50. doi: 10.3969/j.issn.1000-3096.2001.03.016

    Lü Xianqing, Liu Wenjian. Study on the adjoint method in data assimilation and the related problems[J]. Marine Sciences, 2001, 25(3): 44−50. doi: 10.3969/j.issn.1000-3096.2001.03.016
    [355] 朱江, 周广庆, 闫长香, 等. 一个三维变分海洋资料同化系统的设计和初步应用[J]. 中国科学D辑: 地球科学, 2007, 37(2): 261−271. doi: 10.1007/s11430-006-1212-9

    Zhu Jiang, Zhou Guangqing, Yan Changxiang, et al. A three-dimensional variational ocean data assimilation system: Scheme and preliminary results[J]. Science in China Series D: Earth Sciences, 2007, 37(2): 261−271. doi: 10.1007/s11430-006-1212-9
    [356] Xiao Xianjun, Wang dongxiao, Yan Changxiang, et al. Evaluation of a 3dVAR system for the South China Sea[J]. Progress in Natural Science, 2008, 18(5): 547−554. doi: 10.1016/j.pnsc.2007.12.007
    [357] Liu Ye, Zhu Jiang, She Jun, et al. Impacts of assimilating ocean profile observations using a bottom-topography-following recursive filter on ocean forecasting in North Sea/Baltic Sea[J]. Ocean Modelling, 2009, 26(2/3): 75−87.
    [358] Xie Jiping, Zhu Jiang. Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model[J]. Ocean Modelling, 2010, 33(3/4): 283−298. doi: 10.1016/j.ocemod.2010.03.002
    [359] Zheng Fei, Zhu Jiang. Coupled assimilation for an intermediated coupled ENSO prediction model[J]. Ocean dynamics, 2010, 60(5): 1061−1073. doi: 10.1007/s10236-010-0307-1
    [360] Yan Changxiang, Zhu Jiang, Xie Jiping. An ocean data assimilation system in the Indian Ocean and West Pacific Ocean[J]. Advances in Atmospheric Sciences, 2015, 32(11): 1460−1472. doi: 10.1007/s00376-015-4121-z
    [361] Liu Danian, Zhu Jiang, Shu Yeqiang, et al. Targeted observation analysis of a Northwestern Tropical Pacific Ocean mooring array using an ensemble-based method[J]. Ocean Dynamics, 2018, 68(9): 1109−1119. doi: 10.1007/s10236-018-1188-y
    [362] Han Guijun, Li Wei, Zhang Xuefeng, et al. A regional ocean reanalysis system for coastal waters of China and adjacent seas[J]. Advances in Atmospheric Sciences, 2011, 28(3): 682−690. doi: 10.1007/s00376-010-9184-2
    [363] Cheng Lijing, Zhu Jiang. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations[J]. Journal of Climate, 2016, 29(15): 5393−5416. doi: 10.1175/JCLI-D-15-0730.1
    [364] Yin Xunqiang, Qiao Fangli, Shu Qi. Using ensemble adjustment Kalman filter to assimilate Argo profiles in a global OGCM[J]. Ocean Dynamics, 2011, 61(7): 1017−1031. doi: 10.1007/s10236-011-0419-2
    [365] 魏泽勋, 徐腾飞, 王永刚, 等. 南海及周边海域风浪流耦合同化精细化数值预报与信息服务系统简介[J]. 海洋技术学报, 2015, 34(3): 86−90.

    Wei Zexun, Xu Tengfei, Wang Yonggang, et al. Introduction to the fine-resolution wind-wave-current coupled forecasting and information service system for the South China Sea and its adjacent sea areas[J]. Journal of Ocean Technology, 2015, 34(3): 86−90.
    [366] 刘娜, 王辉, 凌铁军, 等. 一个基于MOM的全球海洋数值同化预报系统[J]. 海洋通报, 2018, 37(2): 139−148. doi: 10.11840/j.issn.1001-6392.2018.02.003

    Liu Na, Wang Hui, Ling Tiejun, et al. Development of global ocean general circulation numerical forecasting system in China[J]. Marine Science Bulletin, 2018, 37(2): 139−148. doi: 10.11840/j.issn.1001-6392.2018.02.003
    [367] Sun Junchuan, Wei Zexun, Xu Tengfei, et al. Development of a fine-resolution atmosphere-wave-ocean coupled forecasting model for the South China Sea and its adjacent seas[J]. Acta Oceanologica Sinica, 2019, 38(4): 154–166.
    [368] Wang Tao, Chen Xu, Jiang Wensheng. Laboratory experiments on the generation of internal waves on two kinds of continental margin[J]. Geophysical Research Letters, 2012, 39(4): L04602.
    [369] 马永星. 内波射线的传播与内孤立波过周期地形能量损耗的实验研究[D]. 青岛: 中国海洋大学, 2014.

    Ma Yongxing. The laboratory experiment study of propagation of internal beams and energy dissipation of internal solitary waves passing periodic topography[D]. Qingdao: Ocean University of China, 2014.
    [370] Jia Xiaona, Chen Xu, Li Qun, et al. Study on internal waves generated by tidal flow over critical topography[J]. Journal of Ocean University of China, 2014, 13(5): 728−732. doi: 10.1007/s11802-014-2175-7
    [371] 马永星, 陈旭, 刘长乐, 等. 内波水槽中非均匀密度层结的实现及实验验证[J]. 中国海洋大学学报, 2015, 45(6): 1−6.

    Ma Yongxing, Chen Xu, Liu Changle, et al. One method of preparation of non-uniformly stratified fluid in the internal waves tank and the experimental validation of this method[J]. Periodical of Ocean University of China, 2015, 45(6): 1−6.
    [372] Wang Jinhu, Chen Xu, Wang Wei, et al. Laboratory experiments on the resonance of internal waves on a finite height subcritical topography[J]. Ocean Dynamics, 2015, 65(9/10): 1269−1274. doi: 10.1007/s10236-015-0874-2
    [373] 马昕, 赵栋梁. 降雨对波浪成长的影响实验研究[J]. 中国海洋大学学报, 2015, 45(3): 10−15,32.

    Ma Xin, Zhao Dongliang. Experimental study on rainfall effects on wave growth[J]. Periodical of Ocean University of China, 2015, 45(3): 10−15,32.
    [374] Zhang Yu, Chen Chen, Zhang Zhengguang, et al. Rotating horizontal convection and the potential vorticity constraint[J]. Journal of Fluid Mechanics, 2016, 803: 72−93. doi: 10.1017/jfm.2016.513
    [375] Yuan Yeping, Horner-Devine A R. Experimental investigation of large-scale vortices in a freely spreading gravity current[J]. Physics of Fluids, 2017, 29(10): 106603. doi: 10.1063/1.5006176
    [376] 黄鹏起, 陈旭, 孟静, 等. 内孤立波破碎所致混合的实验研究[J]. 海洋与湖沼, 2016, 47(3): 533−539.

    Huang Pengqi, Chen Xu, Meng Jing, et al. An experimental study on mixing induced by internal solitary wave breaking[J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 533−539.
    [377] 孟静, 王树亚, 陈旭. 分层流体中水平运动源生成内波的表面流场特征[J]. 海洋湖沼通报, 2017, (4): 45−51.

    Meng Jing, Wang Shuya, Chen Xu. Surface velocity field of internal waves generated by a sphere horizontal moving in stratified fluid[J]. Transactions of Oceanology and Limnology, 2017, (4): 45−51.
    [378] Wang Shuya, Chen Xu, Wang Jinhu, et al. Experimental investigation of internal tides generated by finite-height topography[J]. Ocean Dynamics, 2018, 68(8): 957−965. doi: 10.1007/s10236-018-1177-1
    [379] Wang Bin, Chan J C L. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Journal of Climate, 2002, 15(13): 1643−1658.
    [380] Fu Congbin, Diaz H F, Fletcher J O. Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation[J]. Monthly Weather Review, 1986, 114(9): 1716-1739.
    [381] Chang Ping, Zhang Li, Saravanan R, et al. Pacific meridional mode and El Niño-Southern Oscillation[J]. Geophysical Research Letters, 2007, 34(16): L16608.
    [382] Chen Dake, Lian Tao, Fu Congbin, et al. Strong influence of westerly wind bursts on El Niño diversity[J]. Nature Geoscience, 2015, 8(5): 339−345. doi: 10.1038/ngeo2399
    [383] Mu Mu, Duan Wansuo. A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation[J]. Chinese Science Bulletin, 2003, 48(10): L16608. doi: 10.1007/BF03184224
    [384] Yang Jianling, Liu Qinyu, Xie Shangping, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters, 2007, 34(2): L02708.
    [385] Xie Shangping, Hu Kaiming, Hafner J, et al. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño[J]. Journal of Climate, 2009, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1
    [386] Liu lin, Xie Shangping, Zheng Xiaotong, et al. Indian ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode[J]. Climate Dynamics, 2014, 43(5/6): 1715−1730.
    [387] Zheng Xiaotong, Xie Shangping, Liu Qinyu. Response of the Indian Ocean basin mode and its capacitor effect to global warming[J]. Journal of Climate, 2011, 24(23): 6146−6164. doi: 10.1175/2011JCLI4169.1
    [388] Wu Lixin, Li Chun, Yang Chunxue, et al. Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation[J]. Journal of Climate, 2008, 21(12): 3002−3019. doi: 10.1175/2007JCLI1858.1
    [389] Zhang Honghai, Wu Lixin. Predicting North Atlantic sea surface temperature variability on the basis of the first‐mode baroclinic Rossby wave model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C9): C09030.
    [390] Ma Hao, Wu Lixin. Global teleconnections in response to freshening over the Antarctic Ocean[J]. Journal of Climate, 2011, 24(4): 1071−1088. doi: 10.1175/2010JCLI3634.1
    [391] Yang Yun, Wu Lixin, Fang Changfang. Will global warming suppress North Atlantic tripole decadal variability?[J]. Journal of Climate, 2012, 25(6): 2040−2055. doi: 10.1175/JCLI-D-11-00164.1
    [392] Fang Changfang, Wu Lixin, Zhang Xiang. The impact of global warming on the Pacific Decadal Oscillation and the possible mechanism[J]. Advances in Atmospheric Sciences, 2014, 31(1): 118−130. doi: 10.1007/s00376-013-2260-7
    [393] Geng Tao, Yang Yun, Wu Lixin. On the mechanisms of Pacific decadal oscillation modulation in a warming climate[J]. Journal of Climate, 2019, 32(5): 1443−1459. doi: 10.1175/JCLI-D-18-0337.1
    [394] Liu Zhensheng, Wu Lixin, Gallimore R, et al. Search for the origins of Pacific decadal climate variability[J]. Geophysical research letters, 2002, 29(10): 42-1−42-4.
    [395] Liu Zhengyu, Alexander M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections[J]. Reviews of Geophysics, 2007, 45(2): RG2005.
    [396] Liu Zhengyu, Wen Na, Liu Yun. On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment[J]. Journal of Climate, 2008, 21(1): 134−148. doi: 10.1175/2007JCLI1826.1
    [397] Zhong Yafang, Liu Zhengyu. On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean[J]. Journal of Physical Oceanography, 2009, 39(9): 2052−2076. doi: 10.1175/2009JPO4097.1
    [398] Okumura Y, Xie Shangping, Numaguti A, et al. Tropical Atlantic air-sea interaction and its influence on the NAO[J]. Geophysical Research Letters, 2001, 28(8): 1507−1510. doi: 10.1029/2000GL012565
    [399] Xie Shangping, Deser C, Vecchi G A, et al. Global warming pattern formation: Sea surface temperature and rainfall[J]. Journal of Climate, 2010, 23(4): 966−986. doi: 10.1175/2009JCLI3329.1
    [400] Long Shangmin, Xie Shangping, Zheng Xiaotong, et al. Fast and slow responses to global warming: Sea surface temperature and precipitation patterns[J]. Journal of Climate, 2014, 27(1): 285−299. doi: 10.1175/JCLI-D-13-00297.1
    [401] Kosaka Y, Xie Shangping. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7467): 403−407. doi: 10.1038/nature12534
    [402] Xie Shangping, Kosaka Y, Okumura Y M. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus[J]. Nature Geoscience, 2016, 9(1): 29−33. doi: 10.1038/ngeo2581
    [403] Zhang Min, Wu Zhaohua, Qiao Fangli. Deep Atlantic Ocean warming facilitated by the deep western boundary current and equatorial Kelvin waves[J]. Journal of Climate, 2018, 31(20): 8541−8555. doi: 10.1175/JCLI-D-18-0255.1
    [404] Liu Qinyu, Wen Na, Liu Zhengyu. An observational study of the impact of the North Pacific SST on the atmosphere[J]. Geophysical Research Letters, 2006, 33(18): L18611.
    [405] Luo Yiyong, Liu Qinyu, Rothstein L M. Simulated response of North Pacific mode waters to global warming[J]. Geophysical Research Letters, 2009, 36(23): L23609.
    [406] Luo Yiyong, Liu Qinyu, Rothstein L M. Increase of South Pacific eastern subtropical mode water under global warming[J]. Geophysical Research Letters, 2011, 38(1): L01601.
    [407] Huang Boyin, Zhu Jiang, Yang Haijun. Mechanisms of Atlantic Meridional Overturning Circulation (AMOC) variability in a coupled ocean-atmosphere GCM[J]. Advances in Atmospheric Sciences, 2014, 31(2): 241−251. doi: 10.1007/s00376-013-3021-3
    [408] Yang Haijun, Wang Kun, Dai Haijin, et al. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion[J]. Climate Dynamics, 2016, 46(11/12): 3387−3403. doi: 10.1007/s00382-015-2774-z
    [409] Chen Xianyao, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6199): 897−903. doi: 10.1126/science.1254937
    [410] Gao Libao, Rintoul S R, Yu Weidong. Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage[J]. Nature Climate Change, 2018, 8(1): 58−63. doi: 10.1038/s41558-017-0022-8
    [411] Xue Liang, Cai Weijun, Takahashi T, et al. Climatic modulation of surface acidification rates through summertime wind forcing in the southern ocean[J]. Nature Communications, 2018, 9(1): 3240. doi: 10.1038/s41467-017-02088-w
    [412] 张方俭. 我国的海冰[M]. 北京: 海洋出版社, 1986.

    Zhang Fangjian. Sea Ice in China[M]. Beijing:China Ocean Press, 1986.
    [413] 程斌. 一维海冰热力模式的守恒型差分格式和数值模拟[J]. 海洋通报, 1996, 15(4): 8−16.

    Cheng Bin. The conservative difference scheme and numerical simulation of one dimensional thermodynamic sea ice model[J]. Marine Science Bulletin, 1996, 15(4): 8−16.
    [414] 吴辉碇, 白珊, 张占海. 海冰动力学过程的数值模拟[J]. 海洋学报, 1998, 20(2): 149−162.

    Wu Huiding, Bai Shan, Zhang Zhanhai. Numerical simulation for dynamical processes of sea ice[J]. Acta Oceanologica Sinica, 1998, 20(2): 149−162.
    [415] 刘煜, 吴辉碇, 张占海, 等. 基于质点-网格模式的海冰厚度变化过程数值模拟[J]. 海洋学报, 2006, 28(2): 14−21. doi: 10.3321/j.issn:0253-4193.2006.02.002

    Liu Yu, Wu Huiding, Zhang Zhanhai, et al. Modeling for the dynamic process of ice thickness variation using a particle-in-cell ice model[J]. Haiyang Xuebao, 2006, 28(2): 14−21. doi: 10.3321/j.issn:0253-4193.2006.02.002
    [416] Zhang Zhanhai, Wu Huiding. Numerical study on tides and tidal drift of flea ice in the ice-covered Bohai Sea[C]//Sea Ice Observation and Modeling: Proceedings of 93’s International Symposium on Sea Ice. Beijing: China Ocean Press, 1994: 34–46.
    [417] Li Hai, Bai Shan, Wu Huiding. Coupling the Bohai ice model with Blumberg-Mellor model[M]//Shen Hung-Tao. Ice in Surface Waters. Rotterdam: Balkema Publishers, 1998: 305-311.
    [418] 刘钦政, 白珊, 黄嘉佑, 等. 一种冰–海洋模式的热力耦合方案[J]. 海洋学报, 2004, 26(6): 13−21. doi: 10.3321/j.issn:0253-4193.2004.06.002

    Liu Qinzheng, Bai Shan, Huang Jiayou, et al. A thermodynamic coupling scheme for ice-ocean model[J]. Haiyang Xuebao, 2004, 26(6): 13−21. doi: 10.3321/j.issn:0253-4193.2004.06.002
    [419] 丁德文. 工程海冰学概论[M]. 北京: 海洋出版社, 1999.

    Ding Dewen. Introduction to Engineering Sea Ice Science[M]. Beijing: China Ocean Press, 1999.
    [420] Su Jie, Yang Bo, Du Ling, et al. Monitoring thin ice thickness by upward-looking sonar in Bohai Sea[J]. International Journal of Offshore and Polar Engineering, 2013, 23(2): 96−103.
    [421] Xu Ning, Yue Qianjin, Bi Xiangjun, et al. Experimental study of dynamic conical ice force[J]. Cold Regions Science and Technology, 2015, 120: 21−29. doi: 10.1016/j.coldregions.2015.08.010
    [422] 李志军, 王永学, 曲月霞, 等. 半圆型结构冰压力的物理模拟试验研究[J]. 冰川冻土, 2003, 25(4): 445−452. doi: 10.3969/j.issn.1000-0240.2003.04.014

    Li Zhijun, Wang Yongxue, Qu Yuexia, et al. physical modeling study of ice forces on semi-circular structure[J]. Journal of Glaciology and Geocryology, 2003, 25(4): 445−452. doi: 10.3969/j.issn.1000-0240.2003.04.014
    [423] 季顺迎, 岳前进. 工程海冰数值模型及应用[M]. 北京: 科学出版社, 2011.

    Ji Shunying, Yue Qianjin. Numerical Model and Application of Engineering Sea Ice[M]. Beijing: Science Press, 2011.
    [424] 苏玉芬, 董兆乾. 南印度洋夏季的锋区及其水文特征[C]//国家南极考察委员会. 南极科学考察论文集(2). 北京: 海洋出版社, 1984: 25-40.

    Su Yufen, Dong Zhaoqian. Front zones in the South Indian Ocean and their hydrographic characteristics in summer[C]//National Antarctic Investigation Commission. Proceedings of Antarctic Research Expeditions (2). Beijing: China Ocean Press, 1984: 25-40.
    [425] Smith N R, Dong Zhaoqian, Kerry K R, et al. Water masses and circulation in the region of Prydz Bay, Antarctica[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 1984, 31(9): 1121−1147. doi: 10.1016/0198-0149(84)90016-5
    [426] 孙洪亮. 南极长城站潮汐观测与分析[J]. 南极研究, 1990, 2(1): 66−72.

    Sun Hongliang. Observation and analysis of the tide at the great wall station, Antarctica[J]. Antarctic Research, 1990, 2(1): 66−72.
    [427] 许建平, 赵金三, 羊天柱. 南设得兰群岛邻近海域物理海洋学特征和磷虾的关系[C]//国家南极考察委员会. 中国第一届南大洋考察学术研讨会论文专集. 上海: 上海科学技术出版社, 1989: 14-25.

    Xu Jianping, Zhao Jinsan, Yang Tianzhu. Relationship of euphausiacea with physical oceanographic characteristics in the adjacent sea area of South Shetland Islands[C]//National Antarctic Investigation Commission. Proceedings of the First Symposium of China on Southern Ocean Expedition. Shanghai: Shanghai Scientific & Technical Publishers, 1989: 14-25.
    [428] 乐肯堂, 史久新, 于康玲. 普里兹湾区水团和热盐结构的分析[J]. 海洋与湖沼, 1996, 27(3): 229−236.

    Le Kentang, Shi Jiuxin, Yu Kangling. An analysis on water masses and thermohaline structure in the region of Prydz Bay, Antarctica[J]. Oceanologia et Limnologia Sinica, 1996, 27(3): 229−236.
    [429] 陈红霞, 潘增弟, 矫玉田, 等. 埃默里冰架前缘水的特性和海流结构[J]. 极地研究, 2005, 17(2): 139−148.

    Chen Hongxia, Pan Zengdi, Jiao Yutian, et al. Hydrological character and sea-current structure in the front of Amery ice shelf[J]. Chinese Journal of Polar Research, 2005, 17(2): 139−148.
    [430] Guo Guijun, Shi Jiuxin, Gao Libao, et al. Reduced sea ice production due to upwelled oceanic heat flux in Prydz Bay, East Antarctica[J]. Geophysical Research Letters, 2019, 46(9): 4782−4789. doi: 10.1029/2018GL081463
    [431] 高郭平, 韩树宗, 董兆乾, 等. 南印度洋中国中山站至澳大利亚费里曼特尔断面海洋锋位置及其年际变化[J]. 海洋学报, 2003, 25(6): 9−19. doi: 10.3969/j.issn.1009-5470.2003.06.002

    Gao Guoping, Han Shuzong, Dong Zhaoqian, et al. Structure and variability of fronts in the South Indian Ocean along sections from Zhongshan Station to Fremantle[J]. Haiyang Xuebao, 2003, 25(6): 9−19. doi: 10.3969/j.issn.1009-5470.2003.06.002
    [432] Zhang Linlin, Sun Che, Hu Dunxin. Interannual variability of the Antarctic Circumpolar Current strength based on merged altimeter data[J]. Chinese Science Bulletin, 2012, 57(16): 2015−2021. doi: 10.1007/s11434-012-5040-3
    [433] Yao Wenjun, Shi Jiuxin, Zhao Xiaolong. Freshening of Antarctic intermediate water in the South Atlantic Ocean in 2005-2014[J]. Ocean Science, 2017, 13(4): 521−530. doi: 10.5194/os-13-521-2017
    [434] 赵进平, 高郭平, 矫玉田. 1999年楚科奇海台及其周边海域中层与深层水增暖[J]. 中国科学D辑:地球科学, 2004, 34(2): 188−194. doi: 10.1360/02yd0504

    Zhao Jinping, Gao Guoping, Jiao Yutian. Warming in Arctic intermediate and deep waters around Chukchi Plateau and its adjacent regions in 1999[J]. Science in China Series D: Earth Sciences, 2004, 34(2): 188−194. doi: 10.1360/02yd0504
    [435] Zhong Wenli, Zhao Jinping. Deepening of the Atlantic water core in the Canada Basin in 2003-11[J]. Journal of Physical Oceanography, 2014, 44(9): 2353−2369. doi: 10.1175/JPO-D-13-084.1
    [436] Zhong Wenli, Steele M, Zhang Jinlun, et al. Circulation of Pacific winter water in the western Arctic ocean[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 863−881. doi: 10.1029/2018JC014604
    [437] 巢纪平, 李耀锟. 南极绕极流及经圈翻转流的双平衡态理论[J]. 中国科学: 地球科学, 2011, 41(11): 1697−1705.

    Chao Jiping, Li Yaokun. Two equilibria of the Antarctic Circumpolar Current and its associated Meridional Overturning Circulation[J]. Science China: Earth Sciences, 2011, 41(11): 1697−1705.
    [438] 侍小兵, 俞光耀, 董兆乾. 南极普里兹湾夏季流场诊断分析[J]. 青岛海洋大学学报, 1995, 25(S1): 293−311.

    Shi Xiaobing, Yu Guangyao, Dong Zhaoqian. Diagnostic analysis of current field in the summer in Prydz Bay, Antarctica[J]. Journal of Ocean University of Qingdao, 1995, 25(S1): 293−311.
    [439] Shi Jiuxin, Le Kentang, Choi B H. Circulation and its seasonal variability in region around the Kerguelen Plateau[J]. Acta Oceanologica Sinica, 2002, 21(1): 1−17.
    [440] Li Xiang, Su Jie, Wang Zeliang, et al. Modeling Arctic intermediate water: the effects of Neptune parameterization and horizontal resolution[J]. Advances in Polar Science, 2013, 24(2): 98−105.
    [441] Zhang Yu, Chen Changsheng, Beardsley R C. Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings: Results from AO-FVCOM[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4392−4415. doi: 10.1002/2016JC011634
    [442] Liu Chengyan, Wang Zhaomin, Cheng Chen, et al. Modeling modified circumpolar deep water intrusions onto the Prydz Bay continental shelf, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5198−5217. doi: 10.1002/2016JC012336
    [443] 张青松. 南极大陆东部戴维斯站地区海冰观测[J]. 冰川冻土, 1986, 8(2): 143−148.

    Zhang Qingsong. Sea ice observations and measurements at Davis, east Antarctica[J]. Journal of Glaciology and Geocryology, 1986, 8(2): 143−148.
    [444] 秦大河. 南极洲乔治王岛长城湾一年生海冰的发育特征和物理性质[J]. 冰川冻土, 1991, 13(2): 115−130.

    Qin Dahe. Developing and physical characteristics of first-year sea ice in Great Wall Bay and its adjacent area by King George Island, Antarctica[J]. Journal of Glaciology and Geocryology, 1991, 13(2): 115−130.
    [445] Lei Ruibao, Li Zhijun, Cheng Bin, et al. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica[J]. Journal of Geophysical Research: Oceans, 2010, 115(C2): C02006.
    [446] 效存德, 秦大河. 中国首次远征北极点科学考察队“雪冰与环境”考察简介[J]. 地球科学进展, 1996, 11(3): 318−320. doi: 10.3321/j.issn:1001-8166.1996.03.016

    Xiao Cunde, Qin Dahe. Brief introduction to the "snow ice and environment" study of China's first expedition Arctic science expedition team [J]. Advances in Earth Science, 1996, 11(3): 318−320. doi: 10.3321/j.issn:1001-8166.1996.03.016
    [447] 卞林根, 王继志, 孙玉龙, 等. 北冰洋中心区海冰漂流与大气过程[J]. 海洋学报, 2014, 36(10): 48−55. doi: 10.3969/j.issn.0253-4193.2014.10.005

    Bian Lingen, Wang Jizhi, Sun Yulong, et al. Sea ice drifting and atmospheric processes over the central Arctic Ocean[J]. Haiyang Xuebao, 2014, 36(10): 48−55. doi: 10.3969/j.issn.0253-4193.2014.10.005
    [448] 孙波, 温家洪, 康建成, 等. 北冰洋海冰厚度穿透雷达探测与下表面形态特征分析[J]. 中国科学:地球科学, 2003, 32(11): 952−958. doi: 10.1360/02yd0033

    Sun Bo, Wen Jiahong, He Maobing, et al. Sea ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean[J]. Science in China Series D:Earth Sciences, 2003, 32(11): 952−958. doi: 10.1360/02yd0033
    [449] Huang Wenfeng, Lei Ruibo, Han Hongwei, et al. Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012[J]. Cold Regions Science and Technology, 2016, 124: 127−137. doi: 10.1016/j.coldregions.2016.01.005
    [450] Lei Ruibo, Li Na, Heil P, et al. Multiyear sea-ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2014, 119(1): 537−547. doi: 10.1002/2012JC008731
    [451] Lu Peng, Li Zhijun, Cheng Bin, et al. Sea ice surface features in Arctic summer 2008: Aerial observations[J]. Remote Sensing of Environment, 2010, 114(4): 693−699. doi: 10.1016/j.rse.2009.11.009
    [452] Zhao Jinping, Li Tao, Barber D, et al. Attenuation of lateral propagating light in sea ice measured with an artificial lamp in winter Arctic[J]. Cold Regions Science and Technology, 2010, 61(1): 6−12. doi: 10.1016/j.coldregions.2009.12.006
    [453] Yang Qinghua, Losch M, Losa S N, et al. Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation[J]. The Cryosphere, 2016, 10(2): 761−774. doi: 10.5194/tc-10-761-2016
    [454] Fu Hongli, Zhao Jinping, Frey K E. Investigation of polynya dynamics in the northern Bering Sea using greyscale morphology image-processing techniques[J]. International Journal of Remote Sensing, 2012, 33(7): 2214−2232. doi: 10.1080/01431161.2011.608088
    [455] Zhang Yuanyuan, Cheng Xiao, Liu Jiping, et al. The potential of sea ice leads as a predictor for summer Arctic sea ice extent[J]. The Cryosphere, 2018, 12(12): 3747−3757. doi: 10.5194/tc-12-3747-2018
    [456] Shu Qi, Song Zhenya, Qiao Fangli. Assessment of sea ice simulations in the CMIP5 models[J]. The Cryosphere, 2015, 9(1): 399−409. doi: 10.5194/tc-9-399-2015
    [457] Liu Jiping, Curry J A, Wang Huijun, et al. Impact of declining Arctic sea ice on winter snowfall[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4074−4079. doi: 10.1073/pnas.1114910109
    [458] Wu Bingyi, Su Jingzhi, D’Arrigo R. Patterns of Asian winter climate variability and links to Arctic sea ice[J]. Journal of Climate, 2015, 28(17): 6841−6858. doi: 10.1175/JCLI-D-14-00274.1
    [459] 范永祥. 《台风年鉴》整编出版[J]. 气象科技资料, 1973(4): 3.

    Fan Yongxiang. Edition and publication of ‘Yearbook of Typhoon’[J]. Meteorological Science and Technology, 1973(4): 3.
    [460] Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [461] 陈联寿. 台风科学、业务试验和天气动力学理论的研究进展述评[M]. 北京: 气象出版社, 1996.

    Chen Lianshou. Review of Research Process on Typhoon Science, Operational Experiments and Weather Dynamics Theory[M]. Beijing: China Meteorological Press, 1996.
    [462] 陈联寿. 热带气旋研究和业务预报技术的发展[J]. 应用气象学报, 2006, 17(6): 672−681. doi: 10.3969/j.issn.1001-7313.2006.06.005

    Chen Lianshou. The evolution on research and operational forecasting techniques of tropical cyclones[J]. Journal of Applied Meteorological Science, 2006, 17(6): 672−681. doi: 10.3969/j.issn.1001-7313.2006.06.005
    [463] 陈联寿, 丁一汇. 西北太平洋台风概论[M]. 北京: 科学出版社, 1979.

    Chen Lianshou, Ding Yihui. Introduction to Typhoons in the Northwest Pacific[M]. Beijing: Science Press, 1979.
    [464] 端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009

    Duan Yihong, Yu Hui, Wu Rongsheng. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009
    [465] 任福民, 吴国雄, 王小玲, 等. 近60年影响中国之热带气旋[M]. 北京: 气象出版社, 2011.

    Ren Fumin, Wu Guoxiong, Wang Xiaoling, et al. Tropical Cyclones Affecting China over the Last 60 Years[M]. Beijing: China Meteorological Press, 2011.
    [466] 胡姝, 孙立尹, 李英. 热带气旋结构和强度变化研究进展[J]. 气象与环境学报, 2014, 3(4): 91−98.

    Hu Shu, Sun Liyin, LI Ying, et al. Progress in tropical cyclone intensity and structure change[J]. Journal of Meteorology and Environment, 2014, 3(4): 91−98.
    [467] 周磊, 陈大可, 雷小途, 等. 海洋与台风相互作用研究进展[J]. 科学通报, 2019, 64(1): 66−78.

    Zhou Lei, Chen Dake, Lei Xiaotu, et al. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin, 2019, 64(1): 66−78.
    [468] Luo Zhexian, Fan Ping. Simulations of the motion of tropical cyclone-like vortices in the presence of synoptic and mesoscale circulations[J]. Advances in Atmospheric Sciences, 2012, 29(3): 519−528.
    [469] 陈葆德, 王晓峰, 李泓, 等. 快速更新同化预报的关键技术综述[J]. 气象科技进展, 2013, 3(2): 29−35.

    Chen Baode, Wang Xiaofeng, Li hong, et al. An overview of the key techniques in rapid refresh assimilation and forecast[J]. Advances in Meteorological Science and Technology, 2013, 3(2): 29−35.
    [470] 雷小途, 陈联寿. 热带气旋风场模型构造及特征参数估算[J]. 地球物理学报, 2005, 48(1): 25−31. doi: 10.3321/j.issn:0001-5733.2005.01.005

    Lei Xiaotu, Chen Lianshou. A method to construct tropical cyclone wind distribution models and estimate its characteristic parameters[J]. Chinese Journal of Geophysics, 2005, 48(1): 25−31. doi: 10.3321/j.issn:0001-5733.2005.01.005
    [471] 马雷鸣. 国内台风数值预报模式及其关键技术研究进展[J]. 地球物理学进展, 2014, 29(3): 1013−1022. doi: 10.6038/pg20140305

    Ma Leiming. Research progress on China typhoon numerical prediction models and associated major techniques[J]. Progress in Geophysics, 2014, 29(3): 1013−1022. doi: 10.6038/pg20140305
    [472] Li Qingqing, Wang Yuqing, Duan Yihong. A numerical study of outer rainband formation in a sheared tropical cyclone[J]. Journal of the Atmospheric Sciences, 2017, 74(1): 203−227. doi: 10.1175/JAS-D-16-0123.1
    [473] 秦曾灏, 冯士筰. 浅海风暴潮动力机制的初步研究[J]. 中国科学, 1975, 18(1): 64−78.

    Qin Zenghao, Feng Shizuo. A preliminary study on the mechanism of shallow water storm surge[J]. Scientia Sinica , 1975, 18(1): 64−78.
    [474] 孙文心, 冯士筰, 秦曾灏. 超浅海风暴潮的数值模拟(一)——零阶模型对渤海风潮的初步应用[J]. 海洋学报, 1979, 1(2): 193−211.

    Sun Wenxin, Feng Shizuo, Qin Zenghao. Numerical modeling of an ultra-shallow water storm surge (Ⅰ)[J]. Haiyang Xuebao, 1979, 1(2): 193−211.
    [475] 王喜年, 尹庆江, 张保明. 中国海台风风暴潮预报模式的研究与应用[J]. 水科学进展, 1991, 2(1): 1−10. doi: 10.3321/j.issn:1001-6791.1991.01.001

    Wang Xinian, Yin Qingjiang, Zhang Baoming. Research and applications of a forecasting model of typhoon surges in China seas[J]. Advances in Water Science, 1991, 2(1): 1−10. doi: 10.3321/j.issn:1001-6791.1991.01.001
    [476] 于福江, 王喜年, 戴明瑞. 影响连云港的几次显著温带风暴潮过程分析及其数值模拟[J]. 海洋预报, 2002, 19(1): 113−122. doi: 10.3969/j.issn.1003-0239.2002.01.018

    Yu Fujiang, Wang Xinian, Dai Mingrui. Analysis and numerical simulation of some severe extratropical storm surges influenced on lianyungang[J]. Marine Forecasts, 2002, 19(1): 113−122. doi: 10.3969/j.issn.1003-0239.2002.01.018
    [477] 王培涛, 于福江, 刘秋兴, 等. 台风风暴潮异模式集合数值预报技术研究及应用[J]. 海洋学报, 2013, 35(3): 56−64. doi: 10.3969/j.issn.0253-4193.2013.03.007

    Wang Peitao, Yu Fujiang, Liu Qiuxing, et al. Research and applications on multi-model ensemble numerical typhoon surge forecast technology[J]. Haiyang Xuebao, 2013, 35(3): 56−64. doi: 10.3969/j.issn.0253-4193.2013.03.007
    [478] 陈永平. 近岸风暴潮和台风浪集合化预报及灾害评估[R]. 水利部公益性行业科研专项技术报告, 2014.

    Chen Yongping. Ensemble prediction and disaster assessment of storm surge and typhoon-driven waves in the near offshore waters[R]. Special technical report on scientific research of public welfare industry of the Ministry of Water Resources, 2014.
    [479] 管秉贤. 深切缅怀著名海洋学家、我国海浪科研事业的开拓者和奠基人赵九章先生[J]. 海洋科学进展, 2006, 24(3): 275−279. doi: 10.3969/j.issn.1671-6647.2006.03.001

    Guan Bingxian. Dearly cherish the memory of excellent oceanographer and academecian Zhao Jiu-zhang, the pioneer and founder of Chinese ocean wave research undertakings[J]. Advances in Marine Science, 2006, 24(3): 275−279. doi: 10.3969/j.issn.1671-6647.2006.03.001
    [480] 刘占英. 气旋波浪的个例分析[J]. 海洋预报服务, 1985, 2(1): 86−89.

    Liu Zhanying. A case study of cyclone-induced sea waves[J]. Marine Forecast Service, 1985, 2(1): 86−89.
    [481] 许富祥. 中国近海及其邻近海域灾害性海浪的时空分布[J]. 海洋学报, 1996, 18(2): 26−31.

    Xu Fuxiang. Temporal and spatial distribution of disastrous waves in the China offshore waters and its adjacent seas[J]. Acta Oceanologica Sinica, 1996, 18(2): 26−31.
    [482] 陶爱峰, 沈至淳, 李硕, 等. 中国灾害性海浪研究进展[J]. 科技导报, 2018, 36(14): 26−34.

    Tao Aifeng, Shen Zhichun, Li Shuo, et al. Research progress for disastrous waves in China[J]. Science & Technology Review, 2018, 36(14): 26−34.
    [483] 王文质, 陈俊昌, 黎满球, 等. BSCS海浪数值预报方法[J]. 热带海洋, 1990, 9(4): 9−15.

    Wang Wenzhi, ChenJunchang, Li Manqiu, et al. BSCS numerical forecasting method for ocean waves[J]. Tropic Oceanology, 1990, 9(4): 9−15.
    [484] 潘增弟, 孙乐涛, 华锋, 等. LAGFD-II区域性海浪数值模式及其应用 Ⅰ. 海浪数值模式[J]. 海洋与湖沼, 1992, 23(4): 343−349.

    Pan Zengdi, Sun Letao, Hua Feng, et al. LAGFD-II regional numerical wave model and its application Ⅰ. numerical wave model[J]. Oceanologia et Limnologia Sinica, 1992, 23(4): 343−349.
    [485] 刘首华, 牟林, 刘克修, 等. 畸形波研究的进展及存在问题[J]. 地球科学进展, 2013, 28(6): 665−673. doi: 10.11867/j.issn.1001-8166.2013.06.0665

    Liu Shouhua, Mu Lin, Liu Kexiu, et al. Research advance and problems in freak waves[J]. Advances in Earth Science, 2013, 28(6): 665−673. doi: 10.11867/j.issn.1001-8166.2013.06.0665
    [486] He Hailun, Song Jinbao, Bai Yefei, et al. Climate and extrema of ocean waves in the East China Sea[J]. Science China: Earth Science, 2018, 61(7): 980−994. doi: 10.1007/s11430-017-9156-7
    [487] 刘桦, 赵曦, 王本龙. 海啸预警与海岸带减灾研究进展[C]//第二十一届全国水动力学研讨会暨第八届全国水动力学术会议暨两岸船舶与海洋工程水动力学研讨会论文集. 济南: 中国力学学会, 中国造船工程学会, 2008.

    Liu Hua, Zhao Xi, Wang Benlong. Advances in tsunami warning system and hazard mitigation in coastal zones[C]//Proceedings of the 21st National Symposium on Hydraulics, the 8th National Symposium on Hydraulics and the Symposium on Ships and Ocean Engineering Hydraulics across the Taiwan Strait. Ji’nan: Chinese Society of Theoretical and Applied Mechanics, China's Society of Naval Architecture, 2008.
    [488] 王培涛, 赵联大, 于福江, 等. 海啸灾害数值预报技术研究现状[J]. 海洋预报, 2011, 28(3): 74−79. doi: 10.3969/j.issn.1003-0239.2011.03.012

    Wang Peitao, Zhao Lianda, Yu Fujiang, et al. Review of the numerical forecasting technology on the tsunami hazards[J]. Marine Forecasts, 2011, 28(3): 74−79. doi: 10.3969/j.issn.1003-0239.2011.03.012
    [489] 赵联大, 于福江, 滕骏华. 南海定量海啸预警系统[J]. 海洋预报, 2015, 32(2): 1−6.

    Zhao Lianda, Yu Fujiang, Teng Junhua. SCS quantitative tsunami warning system[J]. Marine Forecasts, 2015, 32(2): 1−6.
    [490] 刘智深, 关定华. 海洋物理学[M]. 济南: 山东教育出版社, 2004.

    Liu Zhishen, Guan Dinghua. Ocean Physics[M]. Ji’nan: Shandong Education Press, 2004.
    [491] Guan Dinghua. Development of shallow water acoustic in China[M]//Zhang Renhe, Zhou Jixun. Shallow-Water Acoustics. Beijing: China Ocean Press, 1997: 23-28.
    [492] Zhang Renhe, Li Zhenglin, Peng Zhaohui, et al. Overview of shallow water acoustics in the State Key Laboratory of Acoustics[J]. AIP Conference Proceedings, 2012, 1494: 16.
    [493] Zhu Zenan, Zhu Xiaohua, Guo Xinyu, et al. Assimilation of coastal acoustic tomography data using an unstructured triangular grid ocean model for water with complex coastlines and islands[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7013−7030. doi: 10.1002/2017JC012715
    [494] 张仁和, 李整林. 深海声学专辑·编者按[J]. 中国科学: 物理学∙力学∙天文学, 2016, 46(9): 094301.

    Zhang Renhe, Li Zhenglin. Special issue: deep ocean acoustics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2016, 46(9): 094301.
    [495] Zhang Tinglu, Liu Hai. Deblurring the underwater image using the Monte Carlo method[C]//Proceedings of SPIE 2258. Ocean Optics Ⅻ. Bergen, Norway: SPIE, 1994, 2258: 564–567.
    [496] 潘德炉. 海洋水色遥感机理及反演[M]. 北京: 海洋出版社, 2012.

    Pan Delu. Mechanisms and Inversion of Ocean Color Remote Sensing[M]. Beijing: China Ocean Press, 2012.
    [497] 钟其英. 南海海洋光学研究现状与展望[J]. 南海研究与开发, 1989(1): 36−40.

    Zhong Qiying. Status and prospects of marine optics in the South China Sea[J]. Research and Development of South China Sea, 1989(1): 36−40.
    [498] 唐军武, 陈清莲, 谭世祥, 等. 海洋光谱测量与数据分析处理方法[J]. 海洋通报, 1998, 17(1): 71−79.

    Tang Junwu, Chen Qinglian, Tan Shixiang, et al. Methods of oceanic spectral data measurement and analysis[J]. Marine Science Bulletin, 1998, 17(1): 71−79.
    [499] 王岩峰, 丁永耀. 光学观测小波方法的比较研究[J]. 黄渤海海洋, 1999, 17(1): 36−40.

    Wang Yanfeng, Ding Yongyao. A comparison study on the technique for observation of short wave using optical means[J]. Journal of Oceanograpgy of Huanghai & Bohai Seas, 1999, 17(1): 36−40.
    [500] 李铜基. 中国近海海洋——海洋光学特性与遥感[M]. 北京: 海洋出版社, 2012.

    Li Tongji. China Offshore Seas: Ocean Optical Properties and Remote Sensing[M]. Beijing: China Ocean Press, 2012.
    [501] 国家海洋局. 中国近海海洋图集——海洋光学特性与遥感[M]. 北京: 海洋出版社, 2017.

    State Oceanic Administration. China Offshore Ocean Atlas: Ocean Optical Properties and Remote Sensing[M]. Beijing: China Ocean Press, 2017.
    [502] 郭传杰. 中国科学院[M]. 北京: 中国科学院, 2009.

    Guo Chuanjie. Chinese Academy of Sciences[M]. Beijing: Chinese Academy of Sciences, 2009.
    [503] 黄晓圣, 吴东, 张亭禄, 等. 图像式海水小角度散射函数测量仪[J]. 光学学报, 1998, 18(12): 1716−1720. doi: 10.3321/j.issn:0253-2239.1998.12.022

    Huang Xiaosheng, Wu Dong, Zhang Tinglu, et al. A scatterometor for sea water scattering function measurement[J]. Acta Optica Sinica, 1998, 18(12): 1716−1720. doi: 10.3321/j.issn:0253-2239.1998.12.022
    [504] 曹文熙, 李彩, 柯天存, 等. 基于双光路原理的海水IOPs高光谱测量仪方案[J]. 光学技术, 2003, 29(2): 139−141,145. doi: 10.3321/j.issn:1002-1582.2003.02.011

    Cao Wenxi, Li Cai, Ke Tiancun, et al. Hyperspectral meter for measuring inherent optical properties of sea water based on principle of double-optical-path[J]. Optical Technique, 2003, 29(2): 139−141,145. doi: 10.3321/j.issn:1002-1582.2003.02.011
    [505] 任永琴, 王世忠. 海水浊度测量传感器研究[J]. 海洋技术, 2004, 23(4): 29−31. doi: 10.3969/j.issn.1003-2029.2004.04.007

    Ren Yongqin, Wang Shizhong. A seawater turbidity sensor[J]. Ocean Technology, 2004, 23(4): 29−31. doi: 10.3969/j.issn.1003-2029.2004.04.007
    [506] Li Cai, Cao Wenxi, Yu Jing, et al. An instrument forin situ measuring the volume scattering function of water: Design, calibration and primary experiments[J]. Sensors, 2012, 12(4): 4514−4533. doi: 10.3390/s120404514
    [507] 王东祥, 宋小全, 冯长中, 等. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(S1): 1−7.

    Wang Dongxiang, Song Xiaoquan, Feng Changzhong, et al. Coherent doppler lidar observations of marine atmospheric boundary layer height in the Bohai and Yellow Sea[J]. Acta Optica Sinica, 2015, 35(S1): 1−7.
    [508] Zhang Xin, Du Zengfeng, Zheng Ronger, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2017, 123: 1−12. doi: 10.1016/j.dsr.2017.02.005
    [509] Chen Jing, Ye Wangquan, Guo Jinjia. Diurnal variability in chlorophyll-a, carotenoids, CDOM and SO42– intensity of offshore seawater detected by an underwater fluorescence-Raman spectral system[J]. Sensors, 2016, 16(7): 1082. doi: 10.1109/JSEN.2016.2517933
    [510] 郭金家, 卢渊, 刘春昊, 等. Na2SO4溶液激光拉曼/激光诱导击穿光谱联合探测[J]. 光谱学与光谱分析, 2016, 36(1): 259−261.

    Guo Jinjia, Lu Yuan, Liu Chunhao, et al. Joint analyses of Na2SO4 solution by laser induced breakdown spectroscopy and Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 259−261.
    [511] 孙传东, 陈良益, 高立民, 等. 水的光学特性及其对水下成像的影响[J]. 应用光学, 2000, 21(4): 39−46. doi: 10.3969/j.issn.1002-2082.2000.04.010

    Sun Chuandong, Chen Liangyi, Gao Limin, et al. Water optical properties and their effect on underwater imaging[J]. Journal of Applied Optics, 2000, 21(4): 39−46. doi: 10.3969/j.issn.1002-2082.2000.04.010
    [512] Zheng Bing, Zheng Haiyong, Zhao Lifeng, et al. Underwater 3D target positioning by inhomogeneous illumination based on binocular stereo vision[C]//2012 Oceans-Yeosu. Yeosu, South Korea: IEEE, 2012: 1-4.
    [513] 吴中芳, 周少聪, 何贤强. 水下物体偏振成像探测的实验研究[J]. 激光与光电子学进展, 2018, 55(8): 283−290.

    Wu Zhongfang, Zhou Shaocong, He Xianqiang. Experimental study on underwater objects detection based on polarization imaging[J]. Laser & Optoelectronics Progress, 2018, 55(8): 283−290.
    [514] 何宁, 李海岭, 张德琨, 等. 水下激光通信中信号的分集接收[J]. 激光与红外, 2002, 32(4): 228−229. doi: 10.3969/j.issn.1001-5078.2002.04.005

    He Ning, Li Hailing, Zhang Dekun, et al. The multiple diversity reception of signal under water in laser communication[J]. Laser & Infrared, 2002, 32(4): 228−229. doi: 10.3969/j.issn.1001-5078.2002.04.005
    [515] 刘金涛, 陈卫标. 星载激光对水下目标通信可行性研究[J]. 光学学报, 2006, 26(10): 1441−1446.

    Liu Jintao, Chen Weibiao. Long distance underwater laser communication system based on low-density parity check codes and pulse-position modulation[J]. Acta Optica Sinica, 2006, 26(10): 1441−1446.
    [516] 米乐, 胡思奇, 周田华, 等. 基于低密度奇偶校验码和脉冲位置调制的水下长距离光通信系统设计[J]. 中国激光, 2018, 45(10): 225−231.

    Mi Le, Hu Siqi, Zhou Tianhua, et al. Long distance underwater laser communication system based on low-density parity check codes and pulse-position modulation[J]. Chinese Journal of Lasers, 2018, 45(10): 225−231.
    [517] 王凡, 汪嘉宁. 我国热带西太平洋科学观测网初步建成[J]. 中国科学院院刊, 2016, 31(2): 258−263.

    Wang Fan, Wang Jianing. Initial establishment of China’s scientific observing network in western tropical pacific ocean[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(2): 258−263.
    [518] 汪嘉宁, 王凡, 张林林. 西太平洋深海科学观测网的建设和运行[J]. 海洋与湖沼, 2017, 48(6): 1471−1479. doi: 10.11693/hyhz20170900228

    Wang Jianing, Wang Fan, Zhang Linlin. Construction and operation of a deep-sea scientific observation network in the western Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1471−1479. doi: 10.11693/hyhz20170900228
    [519] 田纪伟, 赵玮, 周春, 等. “南海潜标观测网”成功实现南海深海盆全覆盖. 2017年度中国海洋与湖沼十大科技进展[EB/OL]. (2018–01–15)[2019–07–21]. http://www.sohu.com/a/216918286_726570.

    Tian Jiwei, Zhao Wei, Zhou Chun, et al. ‘South China Sea submarine observation network’ successfully achieves full coverage of the South China Sea deep basin. Ten major scientific and technological advances in Oceanologia et Limnologia Sinica in 2017[EB/OL]. (2018–01–15)[2019–07–21]. http://www.sohu.com/a/216918286_726570.
    [520] 吴立新. 加快建设海洋强国、走向深蓝需要“透明海洋”[J]. 海洋世界, 2017(11): 28−31.

    Wu Lixin. Speeding up construction of China into a powerful ocean country and towards deep blue waters need ‘Transparent Ocean’[J]. Ocean World, 2017(11): 28−31.
    [521] 何剑锋, 张芳, 林凌. 我国极地海底观测系统的发展与展望[J]. 地球科学进展, 2013, 28(5): 566−571. doi: 10.11867/j.issn.1001-8166.2013.05.0566

    He Jianfeng, Zhang Fang, Lin Ling. Development and prospect of Chinese polar seabed observation systems[J]. Advance in Earth Sciences, 2013, 28(5): 566−571. doi: 10.11867/j.issn.1001-8166.2013.05.0566
    [522] 董玉杰, 王辉武, 刘延亮, 等. 南爪哇流的季节内变化[J]. 海洋科学进展, 2013, 31(3): 326−331. doi: 10.3969/j.issn.1671-6647.2013.03.004

    Dong Yujie, Wang Huiwu, Liu Yanliang, et al. Intraseasonal variations of the South Java Current[J]. Advances in Marine Science, 2013, 31(3): 326−331. doi: 10.3969/j.issn.1671-6647.2013.03.004
    [523] Liu Yanliang, Li Kuiping, Ning Chunlin, et al. Observed seasonal variations of the upper ocean structure and air-sea interactions in the Andaman Sea[J]. Journal of Geophysical Research: Oceans, 2018, 938(2): 922−938. doi: 10.1002/2017JC013367
    [524] 武周虎, 赵文谦. 海面溢油扩展、离散和迁移的组合模型[J]. 海洋环境科学, 1992, 11(3): 33−40.

    Wu Zhouhu, Zhao Wenqian. Combined model for oil spill spreading, dispersion and migration[J]. Marine Environmental Science, 1992, 11(3): 33−40.
    [525] 牟林, 赵前. 海洋溢油污染应急技术[M]. 北京: 科学出版社, 2011.

    Mou Lin, Zhao Qian. Emergency Response Technology for Marine Oil Spill Pollution[M]. Beijing: Science Press, 2011.
    [526] Cai Yang, Mu Lin, Li Huan, et al. A review of numerical modeling research on the marine oil spill[J]. Marine Science Bulletin, 2013, 15(2): 71−86.
    [527] 安伟, 王永刚, 王新怡, 等. 中国近海海上溢油预测与应急决策支持系统研发[J]. 海洋科学, 2010, 34(11): 78−83.

    An Wei, Wang Yonggang, Wang Xinyi, et al. An oil spill forecast and emergency decision support system in China offshore[J]. Marine Science, 2010, 34(11): 78−83.
    [528] 李彤, 谢志宜. 水上事故溢油漂移轨迹预测模型研究与应用[J]. 海洋科学, 2013, 38(7): 56−61.

    Li Tong, Xie Zhiyi. Study and application of oil spill trajectory model[J]. Marine Science, 2013, 38(7): 56−61.
    [529] 李燕, 朱江, 王辉, 等. 同化技术在渤海溢油应急预报系统中的应用[J]. 海洋学报, 2014, 36(3): 113−120. doi: 10.3969/j.issn.1673-1212.2013.07.021

    Li Yan, Zhu Jiang, Wang Hui, et al. The assimilation technology application in the oil spill emergency forecasting system of the Bohai Sea[J]. Haiyang Xuebao, 2014, 36(3): 113−120. doi: 10.3969/j.issn.1673-1212.2013.07.021
    [530] Wang Yonggang, Wei Zexun, An Wei. Development of an oil spill forecast system for offshore China[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(4): 859−870. doi: 10.1007/s00343-016-5009-1
    [531] Qiao Fangli, Wang Guansuo, Yin Liping, et al. Modelling oil trajectories and potentially contaminated areas from the Sanchi oil spill[J]. Science of the Total Environment, 2019, 685: 856−866. doi: 10.1016/j.scitotenv.2019.06.255
    [532] 张洪芹. 海上危险化学物质扩散模拟研究的进展[J]. 海洋湖沼通报, 1990(3): 76−79.

    Zhang Hongqin. Progress in modelling of the transport of hazardous chemical spill at sea[J]. Transactions of Oceanology and Limnology, 1990(3): 76−79.
    [533] 朱国林, 雷孝平, 陆凤桐. 大连湾易溶保守液体化学品污染扩散的数值计算[J]. 大连海事大学学报, 1999, 25(1): 74−78. doi: 10.3969/j.issn.1006-7736.1999.01.019

    Zhu Guolin, Lei Xiaoping, Lu Fengtong. The numerical simulation of soluble and conservative liquid chemicals pollutant diffusion in Dalian Bay[J]. Journal of Dalian Maritime University, 1999, 25(1): 74−78. doi: 10.3969/j.issn.1006-7736.1999.01.019
    [534] 王泽良, 王日新, 陶建华. 渤海湾流场以及污染物分布的数值模拟研究[J]. 海洋与湖沼, 1999, 30(2): 224−230. doi: 10.3321/j.issn:0029-814X.1999.02.018

    Wang Zeliang, Wang Rixin, Tao Jianhua. Numerical simulation of tidal current and pollutant distribution of Bohai Bay[J]. Oceanologia et Limnologia Sinica, 1999, 30(2): 224−230. doi: 10.3321/j.issn:0029-814X.1999.02.018
    [535] 陈俊天, 李淑江, 孙俊川, 等. 海上危化品漂移扩散数值模拟研究进展[J]. 海洋科学, 2018, 42(7): 158−166. doi: 10.11759/hykx20171227001

    Chen Juntian, Li Shujiang, Sun Junchuan, et al. Progress and perspective on numerical simulation of hazardous chemicals' drift-diffusion in the sea[J]. Marine Sciences, 2018, 42(7): 158−166. doi: 10.11759/hykx20171227001
    [536] 余江, 卢士强, 刘志国, 等. 突发化学品水污染快速模拟中化学品分类研究[J]. 上海环境科学, 2015, 34(4): 144.

    Yu Jiang, Lu Shiqiang, Liu Zhiguo, et al. A study on classification of chemicals in fast simulating chemical water pollution emergency[J]. Shanghai Environmental Sciences, 2015, 34(4): 144.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1600
  • HTML全文浏览量:  80
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-09-06
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回