留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口黏性泥沙絮凝的湍流动力机制

任杰 张颖

任杰,张颖. 珠江口黏性泥沙絮凝的湍流动力机制[J]. 海洋学报,2019,41(9):105–113,doi:10.3969/j.issn.0253−4193.2019.09.010
引用本文: 任杰,张颖. 珠江口黏性泥沙絮凝的湍流动力机制[J]. 海洋学报,2019,41(9):105–113,doi:10.3969/j.issn.0253−4193.2019.09.010
Ren Jie,Zhang Ying. The turbulent dynamic mechanism of flocculation of cohesive sediment in the Zhujiang River Estuary[J]. Haiyang Xuebao,2019, 41(9):105–113,doi:10.3969/j.issn.0253−4193.2019.09.010
Citation: Ren Jie,Zhang Ying. The turbulent dynamic mechanism of flocculation of cohesive sediment in the Zhujiang River Estuary[J]. Haiyang Xuebao,2019, 41(9):105–113,doi:10.3969/j.issn.0253−4193.2019.09.010

珠江口黏性泥沙絮凝的湍流动力机制

doi: 10.3969/j.issn.0253-4193.2019.09.010
基金项目: 国家自然科学基金(41476072)。
详细信息
    作者简介:

    任杰(1975—),男,四川省南部县人,副教授,博士,主要从事近岸河口动力过程研究。E-mail:renjie@mail.sysu.edu.cn

  • 中图分类号: P731.26

The turbulent dynamic mechanism of flocculation of cohesive sediment in the Zhujiang River Estuary

  • 摘要: 本文利用2010年枯季在珠江口进行的大、中、小潮LISST剖面及底边界层观测资料,分析了磨刀门河口枯季稳定存在的絮团三峰结构,即构建絮团的基本粒子的平均粒径约为8.3~9.0 μm,小絮团为36~100 μm,大絮团大于180 μm。小潮期,盐跃层捕集的悬浮泥沙以强絮凝过程为主,大絮团含量占优;中、大潮期,平均粒径普遍增大,絮凝占优。潮内的动力变化对絮团多峰结构及形态参数的影响不明显,絮凝与解凝处于动态平衡。结合坐底三角架的湍流资料和简化的群体平衡模型(Population Balance Equation,PBE),进一步揭示了絮团变化的湍流动力机制。高流速下的强紊动剪切力,直接导致大絮团被破坏形成小絮凝体,絮凝体平均粒径减小,反之絮凝强于解凝作用。同时,基于高斯矩积分方法求解PBE,得到的粒径分布基本与观测值吻合,说明在有较好的现场湍流与粒径观测资料的条件下,PBE包含的湍流动力机制可以用来研究黏性泥沙的絮凝过程。
  • 图  1  磨刀门河口在珠江三河口湾中的位置(a)及2010年12月15–24日磨刀门水道水文观测站位分布(b)

    Fig.  1  The Zhujiang River Estuary and research area (a) and the distribution of observation stations from December 15, 2010 to December 24, 2010 at Modaomen Estuary (b)

    图  2  灯笼山站边界层的3个观测测次时间与对应的潮型

    Fig.  2  Three observations of the bottom boundary layer and corresponding tide types at Denglongshan Station

    图  3  观测期间风速风向过程曲线

    Fig.  3  The time process of wind direction and speed during the observation

    图  4  M2站剖面轴向流速(a),盐度(b),体积浓度(c),絮团粒径(d)分布

    图中轴向流速的正值表示涨潮,负值表示落潮

    Fig.  4  The profile distribution of velocity (a), salinity (b), volume concentration (c) and diameter of flocs (d) at M2 Station

    The positive (+), negative (-) values of the axial velocity represent the flood tide, ebb tide, respectively

    图  5  H1剖面的粒径分布(a, b, c)和S1剖面的粒径分布(d, e, f)(a, d为表层;b, e为中层或跃层;c, f为底层)

    Fig.  5  Particle size distributions of surface (a, d), middle/halocline (b, e) and bottom (c, f) layers in H1 (a, b and c) and S1(d, e and f) profiles

    图  6  不同剪切率下的粒径分布(a)及粒径随时间演化过程(b)

    图a中C1C2分别表示碰撞效率与破坏频率参数,C是泥沙浓度[32]

    Fig.  6  Experimentally obtained steady-state particle size distributions with different shear rate (a) and time process of flocs evolution (b)

    C1 and C2 represent collision efficiency and failure frequency parameters, respectively; C is the sediment concentration[32]

    图  7  M2站观测期间的剪切率与模拟的平均粒径(a)及颗粒粒径分布(b)

    Fig.  7  The time process of shear rate and simulated mean diameter of particles (a) and particle size distributions (b) at M2 Station

    表  1  观测仪器设置参数

    Tab.  1  The parameters set of the observation instruments

    观测方式仪器参数设置测量项目
    船载系统LISST-100B整点下放,采样频率为1 Hz剖面泥沙粒径分布
    CTD整点下放,采样频率为1 Hz温、盐、深
    座底观测ADV采样频率为64 Hz,测量间隔为5 min,采样时间为3 min,位置分别为0.25 mab、1.35 mab单点三维高频流速、声强
    OBS采样间隔1 min采样,平均时间为10 s,位置分别为0.4 mab、0.9 mab单点浊度
    RBR-CTD采样频率为1 Hz,位置为0.5 mab温、盐、深
    PC-ADP测量间隔为5 min,采样频率为1 Hz,每次测量180个剖面,盲区为0.10 m,位置为1.3 mab剖面流速
      注:mab表示离床面的高度,单位:m。
    下载: 导出CSV

    表  2  特征剖面多峰结构的絮团拟合参数

    Tab.  2  A summary of flocs fitting parameters for particle size distributions at typical profiles

    剖面(观测时间)层位观测值曲线拟合:平均粒径/μm曲线拟合:体积浓度/μL·L–1曲线拟合:几何标准差
    H/mV/μL·L–1D/μmm1m2m3m1m2m3m1m2m3
    H1(2010年10月15日16时)S1.647.547.18.5362304.430.121.91.31.591.41
    H5.52 674178.343100237431 8241 8361.211.21.27
    B7.2140718.64123040671031.431.291.32
    H2(2010年10月15日21时)S1.646488.536159426181.051.241.68
    H5.63 88315550991781545213 2941.421.061.2
    B6.695.655.48.6372304023331.381.781.35
    S1(2010年10月20日17时)S16231648.8491989536001.171.591.17
    H3.6655.21658.9512009586331.171.661.17
    B7.26971718.9492099577251.171.581.17
    S2(2010年10月21日4时)S18981368.848228311091 0691.341.71.27
    H3.29101338.849238311801 2191.341.721.29
    B6.51 3321358.350240292771 7761.311.931.23
      注:S、H、B分别代表表层、跃层或中层、底层;VD表示观测的总体积浓度和平均粒径;m1、m2、m3分别为3个分解模态;H表示水深。
    下载: 导出CSV
  • [1] Krone R B. Flume studies of the transport of sediment in estuarial shoaling process[R]. Berkeley, California: University of California, 1962: 1–110.
    [2] Gibbs R J. Estuarine flocs: their size, settling velocity and density[J]. Journal of Geophysical Research: Oceans, 1985, 90(C2): 3249−3251. doi: 10.1029/JC090iC02p03249
    [3] Fettweis M. Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements[J]. Estuarine, Coastal and Shelf Science, 2008, 78(2): 426−436. doi: 10.1016/j.ecss.2008.01.007
    [4] Manning A J, Bass S J, Dyer K R. Floc properties in the turbidity maximum of a mesotidal estuary during neap and spring tidal conditions[J]. Marine Geology, 2006, 235(1/4): 193−211.
    [5] Lee B J, Toorman E, Fettweis M. Multimodal particle size distributions of fine-grained sediments: mathematical modeling and field investigation[J]. Ocean Dynamics, 2014, 64(3): 429−441. doi: 10.1007/s10236-014-0692-y
    [6] van Leussen W. Estuarine macroflocs and their role in fine-grained sediment transport[D]. Utrecht: University of Utrecht, 1994: 1–484.
    [7] Winterwerp J C, van Kesteren W G M. Introduction to the Physics of Cohesive Sediment in the Marine Environment[M]. Amsterdam: Elsevier, 2004: 109–117.
    [8] Sternberg R W, Berhane I, Ogston A S. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf[J]. Marine Geology, 1999, 154(1/4): 43−53.
    [9] Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology, 2000, 168(1/4): 89−114.
    [10] Agrawal Y C, Traykovski P. Particles in the bottom boundary layer: concentration and size dynamics through events[J]. Journal of Geophysical Research: Oceans, 2001, 106(C5): 9533−9542. doi: 10.1029/2000JC900160
    [11] Christiansen C, Bartholdy J, Sørensen C. Composition and size distributions of local and advected sediment trapped over a tidal flat during moderate and storm conditions[J]. Geografisk Tidsskrift: Danish Journal of Geography, 2006, 106(1): 1−11. doi: 10.1080/00167223.2006.10649541
    [12] Mikkelsen O A, Hill P S, Milligan T G. Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera[J]. Journal of Sea Research, 2006, 55(2): 87−102. doi: 10.1016/j.seares.2005.09.003
    [13] Lee B J, Fettweis M, Toorman E, et al. Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone[J]. Journal of Geophysical Research: Oceans, 2012, 117(C3): C03014.
    [14] Eisma D. Flocculation and de-flocculation of suspended matter in estuaries[J]. Netherlands Journal of Sea Research, 1986, 20(2/3): 183−199.
    [15] Andrews S, Nover D, Schladow S G. Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition[J]. Limnology and Oceanography: Methods, 2010, 8(10): 507−526. doi: 10.4319/lom.2010.8.507
    [16] Alldredge A L, Silver M W. Characteristics, dynamics and significance of marine snow[J]. Progress in Oceanography, 1988, 20(1): 41−82. doi: 10.1016/0079-6611(88)90053-5
    [17] Manning A J, Bass S J. Variability in cohesive sediment settling fluxes: observations under different estuarine tidal conditions[J]. Marine Geology, 2006, 235(1/4): 177−192.
    [18] Verney R, Lafite R, Brun-Cottan J C, et al. Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modelling[J]. Continental Shelf Research, 2011, 31(S10): S64−S83.
    [19] Shen Xiaoteng. Modeling flocculation and deflocculation processes of cohesive sediments[D]. Williamsburg, VA: College of William and Mary, 2016: 1–319.
    [20] Von Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[J]. Zeitschrift Für Physikalische Chemie, 1917, 92: 129−168.
    [21] Maggi F, Mietta F, Winterwerp J C. Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment[J]. Journal of Hydrology, 2007, 343(1/2): 43−55.
    [22] Lee B J, Toorman E, Molz F J, et al. A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments[J]. Water Research, 2011, 45(5): 2131−2145. doi: 10.1016/j.watres.2010.12.028
    [23] Shen Xiaoteng, Maa J P Y. Modeling floc size distribution of suspended cohesive sediments using quadrature method of moments[J]. Marine Geology, 2015, 359: 106−119. doi: 10.1016/j.margeo.2014.11.014
    [24] Hussein T, Maso M D, Petäjä T, et al. Evaluation of an automatic algorithm for fitting the particle number size distributions[J]. Boreal Environment Research, 2005, 10(5): 337−355.
    [25] Mäkelä J M, Koponen I K, Aalto P, et al. One-year data of submicron size modes of tropospheric background aerosol in Southern Finland[J]. Journal of Aerosol Science, 2000, 31(5): 595−611. doi: 10.1016/S0021-8502(99)00545-5
    [26] Whitby K T. The physical characteristics of sulfur aerosols[J]. Atmospheric Environment, 1978, 12(1/3): 135−159.
    [27] Kariwala V, Cao Yi, Nagy Z K. Automatic differentiation-based quadrature method of moments for solving population balance equations[J]. AIChE Journal, 2012, 58(3): 842−854. doi: 10.1002/aic.v58.3
    [28] 苏军伟, 顾兆林, Xu X Y. 离散相系统群体平衡模型的求解算法[J]. 中国科学: 化学, 2010, 40(2): 144−160.

    Su Junwei, Gu Zhaolin, Xu X Y. Advances of solution methods of population balance equation for disperse phase system[J]. Scientia Sinica Chimica, 2010, 40(2): 144−160.
    [29] Ren Jie, Wu Jiaxue. Sediment trapping by haloclines of a river plume in the Pearl River Estuary[J]. Continental Shelf Research, 2014, 82: 1−8. doi: 10.1016/j.csr.2014.03.016
    [30] Xia X M, Li Y, Yang H, et al. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16): 1809−1826. doi: 10.1016/j.csr.2004.06.009
    [31] 程江, 何青, 夏小明. 长江口徐六泾悬浮细颗粒泥沙絮凝体特性[J]. 海洋与湖沼, 2007, 38(4): 304−313. doi: 10.3321/j.issn:0029-814X.2007.04.003

    Cheng Jiang, He Qing, Xia Xiaoming. Characteristics of suspended fine sediment flocs in Changjiang (Yangtze) Estuary[J]. Oceanologia et Limnologia Sinica, 2007, 38(4): 304−313. doi: 10.3321/j.issn:0029-814X.2007.04.003
    [32] Kusuda T, Yamanishi H, Spearman J, et al. Sediment and Ecohydraulics: INTERCOH 2005[M]. Amsterdam: Elsevier, 2008.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  32
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 修回日期:  2018-10-23
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回