留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极冰藻Chlamydomonas sp. ICE-L过氧化氢酶的热胁迫响应

袁保生 赵霞 刘晨临 张培玉

袁保生,赵霞,刘晨临,等. 南极冰藻 Chlamydomonas sp. ICE-L过氧化氢酶的热胁迫响应[J]. 海洋学报,2019,41(9):80–85,doi:10.3969/j.issn.0253−4193.2019.09.007
引用本文: 袁保生,赵霞,刘晨临,等. 南极冰藻 Chlamydomonas sp. ICE-L过氧化氢酶的热胁迫响应[J]. 海洋学报,2019,41(9):80–85,doi:10.3969/ j.issn.0253−4193.2019.09.007
Yuan Baosheng,Zhao Xia,Liu Chenlin, et al. Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress[J]. Haiyang Xuebao,2019, 41(9):80–85,doi:10.3969/j.issn.0253−4193.2019.09.007
Citation: Yuan Baosheng,Zhao Xia,Liu Chenlin, et al. Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress[J]. Haiyang Xuebao,2019, 41(9):80–85,doi:10.3969/ j.issn.0253−4193.2019.09.007

南极冰藻Chlamydomonas sp. ICE-L过氧化氢酶的热胁迫响应

doi: 10.3969/j.issn.0253-4193.2019.09.007
基金项目: 国家自然科学基金面上项目(41276203)。
详细信息
    作者简介:

    袁保生(1995—),男,山东省聊城市人,主要从事分子生物学研究。E-mail:Yuanbaosheng1994@163.com

    通讯作者:

    刘晨临(1974—),女,山东省滨州市人,研究员,主要从事藻类分子生物学研究。E-mail:ch.lliu@163.com

  • 中图分类号: Q945.78

Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress

  • 摘要: 为了研究南极冰藻的热胁迫应答机制,本文根据转录组测序得到的冰藻Chlamydomonas sp. ICE-L过氧化氢酶CiCAT基因分析了其编码蛋白的特征,同时研究了CiCAT基因表达和过氧化氢酶活性在培养温度升高时的响应变化情况。结果表明:CiCAT基因序列全长为2 066 bp,编码492个氨基酸。在过氧化氢酶的系统进化树中,南极冰藻与其他绿藻聚类为一个分支。CiCAT编码的蛋白序列与盐藻和红球藻的过氧化氢酶序列相似性较高,分别为80.5%和78.9%。当南极冰藻处于热胁迫条件下,CiCAT基因的相对表达量和过氧化氢酶活均呈现出先上升后下降的趋势,但在胁迫24 h时CiCAT基因的表达量变化不明显,而实验组的酶活显著高于对照组。在胁迫72 h时,基因表达量和酶活均达到最高值。研究初步表明,与在常温藻类和高等植物中的功能相似,在经受热胁迫的情况下,南极冰藻中的抗氧化酶系统也发挥着重要作用。
  • 图  1  CiCAT基因编码蛋白保守结构域分析(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?RID=NTDBEUUU014&mode=all)

    Fig.  1  Conserved domain of encoded protein by ice algae CiCAT gene (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?RID=NTDBEUUU014&mode=all)

    图  2  冰藻与其他物种过氧化氢酶氨基酸序列的系统进化树分析

    Fig.  2  Phylogenetic tree of catalase amino acid sequences between ice algae and other species

    图  3  热胁迫下南极冰藻的生长曲线

    OD750表示波长750 nm处的吸光度

    Fig.  3  Growth curves of Antarctic ice alga under heat stress

    OD750 is optical density at wavelength 750 nm

    图  4  热胁迫下南极冰藻CiCAT基因随时间的相对表达变化

    Fig.  4  The expression of CiCAT gene of Antarctic ice alga under heat stress

    图  5  热胁迫下南极冰藻过氧化氢酶活性变化

    Fig.  5  Changes of catalase activity of Antarctic ice alga under heat stress

  • [1] Asada K. Production and action of active oxygen species in photosynthetic tissues[C]//Foyer C H, Mullineaux P M. Causes of Photooxidative Stress and Amelioration of Defense System in Plants. Boca Raton: CRC Press, 1994: 77–104.
    [2] Quan Lijuan, Zhang Bo, Shi Weiwei, et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1): 2−18. doi: 10.1111/j.1744-7909.2007.00599.x
    [3] Elstner E F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology, 1982, 33: 73−96. doi: 10.1146/annurev.pp.33.060182.000445
    [4] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83−116. doi: 10.1146/annurev.pp.43.060192.000503
    [5] Scandalios J G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7): 995−1014. doi: 10.1590/S0100-879X2005000700003
    [6] Zamocky M, Furtmüller P G, Obinger C. Evolution of catalases from bacteria to humans[J]. Antioxidants & Redox Signaling, 2008, 10(9): 1527−1548.
    [7] Purev M, Kim Y J, Kim M K, et al. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses[J]. Plant Physiology and Biochemistry, 2010, 48(6): 451−460. doi: 10.1016/j.plaphy.2010.02.005
    [8] Zhou Yong, Liu Shiqiang, Yang Zijian, et al. CsCAT3, a catalase gene from Cucumis sativus, confers resistance to a variety of stresses to Escherichia coli[J]. Biotechnology & Biotechnological Equipment, 2017, 31(5): 886−896.
    [9] Chiang C M, Chen Shipeng, Chen L F O, et al. Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology, 2014, 23(3): 266−277. doi: 10.1007/s13562-013-0210-1
    [10] Shao Ning, Beck C F, Lemaire S D, et al. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii[J]. Planta, 2008, 228(6): 1055−1066. doi: 10.1007/s00425-008-0807-0
    [11] Elbaz A, Wei Yuanyuan, Meng Qian, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii[J]. Ecotoxicology, 2010, 19(7): 1285−1293. doi: 10.1007/s10646-010-0514-z
    [12] Provasoli L. Media and prospects for the cultivation of marine algae[M]//Watanabe A, Hattori A. Cultures and Collections of Algae. Tokyo: Japanese Society of Plant Physiology, 1968.
    [13] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [14] Wu Guangting, Liu Chenlin, Liu Shenghao, et al. High-quality RNA preparation for cDNA library construction of the Antarctic sea-ice alga Chlamydomonas sp. ICE-L[J]. Journal of Applied Phycology, 2010, 22(6): 779−783. doi: 10.1007/s10811-010-9519-5
    [15] Liu Chenlin, Wu Guangting, Huang Xiaohang, et al. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation[J]. Extremophiles, 2012, 16(3): 419−425. doi: 10.1007/s00792-012-0441-4
    [16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [17] Kamigaki A, Mano S, Terauchi K, et al. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor[J]. Plant Journal, 2003, 33(1): 161−175. doi: 10.1046/j.0960-7412.2003.001605.x
    [18] Liu Chenlin, Huang Xiaohang, Wang Xiuliang, et al. Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics[J]. Phycologia, 2006, 45(2): 190−198. doi: 10.2216/03-88.1
    [19] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
    [20] Bailly C, Leymarie J, Lehner A, et al. Catalase activity and expression in developing sunflower seeds as related to drying[J]. Journal of Experimental Botany, 2004, 55(396): 475−483. doi: 10.1093/jxb/erh050
    [21] Moreira S F I, Bailão A M, Barbosa M S, et al. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis[J]. Yeast, 2004, 21(2): 173−182. doi: 10.1002/yea.1077
    [22] 王升平, 杨金广, 战徊旭, 等. 烟草过氧化氢酶基因CAT1的克隆及表达特征分析[J]. 中国烟草学报, 2014, 20(5): 103−109. doi: 10.3969/j.issn.1004-5708.2014.05.017

    Wang Shengping, Yang Jinguang, Zhan Huixu, et al. Cloning of catalase gene(CAT1) and its expression patterns in Nicotiana tabacum L.[J]. Acta Tabacaria Sinica, 2014, 20(5): 103−109. doi: 10.3969/j.issn.1004-5708.2014.05.017
    [23] Yong Bin, Wang Xiaoyan, Xu Pan, et al. Isolation and abiotic stress resistance analyses of a catalase gene from Ipomoea batatas (L.) Lam[J]. BioMed Research International, 2017, 2017: 6847532.
    [24] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601−639. doi: 10.1146/annurev.arplant.50.1.601
  • 加载中
图(5)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  14
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-02
  • 修回日期:  2019-04-09
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回