留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

罗斯海西部末次冰盛期以来沉积环境重建:有机碳与生物标志化合物分析

宋乐慧 韩喜彬 李家彪 高抒 刘庚 龙盼盼

宋乐慧,韩喜彬,李家彪,等. 罗斯海西部末次冰盛期以来沉积环境重建:有机碳与生物标志化合物分析[J]. 海洋学报,2019,41(9):52–64,doi:10.3969/j.issn.0253−4193.2019.09.005
引用本文: 宋乐慧,韩喜彬,李家彪,等. 罗斯海西部末次冰盛期以来沉积环境重建:有机碳与生物标志化合物分析[J]. 海洋学报,2019,41(9):52–64,doi:10.3969/j.issn.0253−4193.2019.09.005
Song Lehui,Han Xibin,Li Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses[J]. Haiyang Xuebao,2019, 41(9):52–64,doi:10.3969/j.issn.0253−4193.2019.09.005
Citation: Song Lehui,Han Xibin,Li Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses[J]. Haiyang Xuebao,2019, 41(9):52–64,doi:10.3969/j.issn.0253−4193.2019.09.005

罗斯海西部末次冰盛期以来沉积环境重建:有机碳与生物标志化合物分析

doi: 10.3969/j.issn.0253-4193.2019.09.005
基金项目: “全球变化与海气相互作用”专项(GASI-GEOGE-03,GASI-04-01-02);国家自然科学基金(41476047,41476069);极地考察业务化与科研:国家南极观测监测网运维与管理;极地考察业务化与科研:南北极环境综合考察评估与管理。
详细信息
    作者简介:

    宋乐慧(1994—),女,山东省枣庄市人,主要从事海洋沉积环境研究。E-mail:songlhsong@163.com

    通讯作者:

    韩喜彬,男,博士,副研究员,主要从事海洋地质研究工作。E-mail:hanxibin@sio.org.cn

  • 中图分类号: P736.4

Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses

  • 摘要: 本文研究采自位于南极罗斯海西部的ANT32-RB16C柱状沉积物,根据粒度、有机碳和生物标志化合物数据探讨末次冰盛期(24.8 ~20 ka BP)以来该地区有机质来源及沉积环境特征。该柱状样记录了冰架下沉积、冰架前沉积、开阔海域沉积的沉积环境。指示有机质来源的生物标志化合物指标表明该柱状样中所含有机质主要为浮游植物、细菌等海源输入,同时伴有少量陆源物质混合输入。末次冰盛期,由于冰架的影响有机质含量较低,环流影响使得有机质受低等浮游藻类生物等海源影响较大。末次冰消期(20~11.7 ka BP),罗斯冰架消退,冰川溶解释放的有机质在此沉积,使得陆源有机质输入增多,有机质含量升高。进入全新世,有机质含量较末次冰盛期和末次冰消期明显升高,海源输入比例增大,同时细菌等原核生物增多,导致短链正构烷烃降解程度较大。研究区的氧化还原环境主要受冰架与海冰限制作用的影响,与有机质含量和高氧的南极底层水关系不大。总体来说,从末次冰盛期到末次冰消期,研究区沉积环境受罗斯冰架进退影响,全新世以来受气候变化影响。
  • 图  1  南极罗斯海ANT32-RB16C、其他岩芯和WDC冰芯[18]位置及区域环流

    1. ANT32-JB06岩芯[8];2.ANT32-JB04岩芯[19];3.GC1606岩芯[20];AASW.南极表层水;AABW.南极底层水;CDW.绕极深层水;MCDW.变性绕极深 层水;DSW.高密度陆架重水;ISW.冰架水

    Fig.  1  Locations of Core ANT32-RB16C, other cores and WDC ice core[18] and circulation patterns of the Ross Sea

    1. Core ANT32-JB06[8]; 2. Core ANT32-JB04[19]; 3. Core GC1606[20]; AASW. Antarctic Surface Water; AABW. Antarctic Bottom Water; CDW. Circumpolar Deep Water; MCDW. Modified Circumpolar Deep Water; DSW. Dense Shelf Water; ISW. Ice Shelf Water

    图  2  ANT32-RB16C沉积柱状样210Pbex垂直剖面

    Fig.  2  210Pbex profile in sediment of Core ANT32-RB16C

    图  3  ANT32-RB16C沉积柱状样基于Bacon程序的年龄深度模型

    Fig.  3  Age-depth models of Core ANT32-RB16C based on Bacon program

    图  4  ANT32-RB16C沉积柱状样岩性、粒度组分、TOC变化和WDC δ18O记录[18]

    ACR.南极冷反转事件;Ⅰ.末次冰消期沉积记录振荡时期(粒度组分出现明显变化,而有机碳及生物标志物指标均无明显变化);Ⅱ.晚全新世沉 积记录振荡时期(有机碳及生物标志物指标均出现明显变化,而粒度组分无明显变化)

    Fig.  4  Grain size variation of Core ANT32-RB16C and WDC δ18O record[18]

    ACR. Antarctica Cold Reversal; Ⅰ. oscillation period of sedimentary records in the Last Deglaciation; Ⅱ. oscillation period of sedimentary records in Late Holocene

    图  5  ANT32-RB16C柱状沉积物正构烷烃及姥鲛烷(Pr)、植烷(Ph)指标

    ACR.南极冷反转事件;Ⅰ.末次冰消期沉积记录振荡时期;Ⅱ.晚全新世沉积记录振荡时期

    Fig.  5  The n-alkanes, pristine and phytane parameters of Core ANT32-RB16C

    ACR. Antarctica Cold Reversal; Ⅰ. oscillation period of sedimentary records in Last Deglaciation; Ⅱ. oscillation period of sedimentary records in Late Holocene

    图  6  ANT32-RB16C柱状沉积物三环萜烷相对组成及其他萜烷指标

    ACR.南极冷反转事件;Ⅰ.末次冰消期沉积记录振荡时期;Ⅱ.晚全新世沉积记录振荡时期

    Fig.  6  The tricyclic terpane constitute and other terpane parameters of Core ANT32-RB16C

    ACR. Antarctica Cold Reversal; Ⅰ. oscillation period of sedimentary records in Last Deglaciation; Ⅱ. oscillation period of sedimentary records in Late Holocene

    表  1  ANT32-RB16C沉积柱状样AMS14C测年数据及日历年龄

    Tab.  1  AMS14C data and calendar age of Core ANT32-RB16C

    层位/cm测试材料测量值/a BP(碳库年龄+
    老碳年龄)/a
    日历年龄
    /a BP
    0~2有机碳6 000±305 008
    4~6有机碳5 150±305 008521
    6~8有机碳5 440±305 008778
    42~44有机碳9 620±405 008
    44~46有机碳8 960±305 0084 627
    72~74有机碳16 400±505 00813 988
    74~76有机碳17 520±505 00815 143
    136~138有机碳25 610±1005 008
    138~140有机碳24 910±905 00820 385
    154~156有机碳26 390±1105 008
    204~206有机碳25 040±1005 00823 755
    206~208有机碳27 410±1305 008
    230~232有机碳25 420±1005 00824 762
      注:日历年龄由Bacon 2.3.3程序拟合后的年龄减去碳库年龄与老碳年龄之和5 008 a所得。
    下载: 导出CSV
  • [1] Iii T W, Orsi A H. Antarctic Bottom Water production and export by tides in the Ross Sea[J]. Geophysical Research Letters, 2006, 33(12): 285−293.
    [2] Budillon G, Castagno P, Aliani S, et al. Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58(10): 1002−1018. doi: 10.1016/j.dsr.2011.07.002
    [3] Denton G H, Bockheim J G, Wilson S C, et al. Late wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica[J]. Quaternary Research, 1989, 31(2): 151−182. doi: 10.1016/0033-5894(89)90004-5
    [4] Ship S, Anderson J, Domack E. Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1-Geophysical results[J]. Geological Society of America Bulletin, 1999, 111(10): 1486−1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2
    [5] Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review[J]. Quaternary Science Reviews, 2002, 21(1): 49−70.
    [6] Licht K J Dunbar N W, Andrews J T, et al. Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a last glacial maximum grounding line[J]. Geological Society of America Bulletin, 1999, 111(1): 91−103. doi: 10.1130/0016-7606(1999)111<0091:DSTAGM>2.3.CO;2
    [7] Salvi C, Busetti M, Marinoni L, et al. Late Quaternary glacial marine to marine sedimentation in the Pennell Trough (Ross Sea, Antarctica)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 231(1): 199−214.
    [8] 黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5): 97−108.

    Huang Mengxue, Wang Rujian, Xiao Wenshen, et al. Retreat process of Ross Ice Shelf and hydrodynamic changes on northwestern Ross continental shelf since the last glacial[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 97−108.
    [9] Müller A, Voss M. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios of organic matter-sources and sediments[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 145(1/3): 17−32.
    [10] Meyers P A, Lallier-Vergés E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345−372. doi: 10.1023/A:1008073732192
    [11] 傅家谟, 盛国英. 分子有机地球化学与古气候、古环境研究[J]. 第四纪研究, 1992, 12(4): 306−320. doi: 10.3321/j.issn:1001-7410.1992.04.003

    Fu Jiamo, Sheng Guoying. Molecular organic geochemistry and its application to the study of paleoclimate and paleoenvironments[J]. Quaternary Sciences, 1992, 12(4): 306−320. doi: 10.3321/j.issn:1001-7410.1992.04.003
    [12] Poynter J, Eglinton G. The biomarker concept-strengths and weaknesses[J]. Fresenius Journal of Analytical Chemistry, 1991, 339(10): 725−731. doi: 10.1007/BF00321733
    [13] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261−289. doi: 10.1016/S0146-6380(02)00168-7
    [14] Matsumoto G I, Akiyama M, Watanuki K, et al. Unusual distributions of long-chain n-alkanes and n-alkenes in Antarctic soil[J]. Organic Geochemistry, 1990, 15(4): 403−412. doi: 10.1016/0146-6380(90)90167-X
    [15] 汪建君, 孙立广, 胡建芳, 等. 南极阿德雷岛企鹅粪土沉积物分子地球化学特征[J]. 极地研究, 2006, 18(4): 245−253.

    Wang Jianjun, Sun Liguang, Hu Jianfang, et al. Organic geochemistry of penguin ornithogenic sediment from Ardley Island, West Antarctica[J]. Chinese Journal of Polar Research, 2006, 18(4): 245−253.
    [16] 于培松, 张海生, 扈传昱, 等. 南极普里兹湾沉积生物标志物记录及浮游植物群落结构变化[J]. 极地研究, 2012, 24(2): 143−150.

    Yu Peisong, Zhang Haisheng, Hu Chuanyu, et al. Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2012, 24(2): 143−150.
    [17] Wisnieski E, Bícego M C, Montone R C, et al. Characterization of sources and temporal variation in the organic matter input indicated by n-alkanols and sterols in sediment cores from Admiralty Bay, King George Island, Antarctica[J]. Polar Biology, 2014, 37(4): 483−496. doi: 10.1007/s00300-014-1445-6
    [18] Members W D P. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661. doi: 10.1038/nature14401
    [19] 赵仁杰, 陈志华, 刘合林, 等. 15 ka以来罗斯海陆架岩心沉积学记录及古海洋学意义[J]. 海洋学报, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008

    Zhao Renjie, Chen Zhihua, Liu Helin, et al. Sedimentary record and paleoceanographic implications of the core on the continental shelf off the Ross Sea since 15 ka[J]. Haiyang Xuebao, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008
    [20] Nishimura A, Nakasone I T, Hiramatsu C, et al. Late Quaternary paleoenvirontnent of the Ross Sea continental shelf, Antarctica[J]. Annals of Glaciology, 1998, 27: 275−280. doi: 10.3189/1998AoG27-1-275-280
    [21] 聂亚光. 南极罗斯海地区粪土沉积物的元素同位素地球化学与企鹅古生态研究[D]. 合肥: 中国科学技术大学, 2014.

    Nie Yaguang. Geochemical and paleo-ecological research on ornithogenic sediments from the Ross Sea region[D]. Hefei: University of Science and Technology of China, 2014.
    [22] Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13/14): 778−795.
    [23] Basak C, Pahnke K, Frank M, et al. Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific[J]. Earth and Planetary Science Letters, 2015, 419: 211−221. doi: 10.1016/j.jpgl.2015.03.011
    [24] Foldvik A, Gammelsrød T. Notes on Southern Ocean hydrography, sea-ice and bottom water formation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1988, 67(1): 3−17.
    [25] Yokoyama Y, Anderson J B, Yamane M, et al. Widespread collapse of the Ross Ice Shelf during the late Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2354−2359. doi: 10.1073/pnas.1516908113
    [26] Dinniman M S, Klinck J M, Smith Jr W O. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(13/16): 1508−1523.
    [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋沉积物中放射性核素的测定γ能谱法: GB/T 30738-2014[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Determination of radionuclide in marine sediment Gamma spectrometry: GB/T 30738-2014[S]. Beijing: China Standards Press, 2014.
    [28] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(6): 457−474.
    [29] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [30] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋调查规范第8部分: 海洋地质地球物理调查: GB/T 12763.8-2007[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Specifications for oceanographic survey Part 8: Marine geology and geophysics survey: GB/T 12763.8-2007[S]. Beijing: China Standards Press, 2007.
    [31] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地质样品有机地球化学分析方法第2部分: 有机质稳定碳同位素测定同位素质谱法: GB/T 18340.2-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Organic geochemical chemical analysis method for geological samples Part 2: Determination of organic carbon stable isotopic component isotopic mass spectrometry: GB/T 18340.2-2010[S]. Beijing: China Standards Press, 2010.
    [32] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气相色谱–质谱法测定沉积物和原油中生物标志物: GB/T 18606-2001[S]. 北京: 中国标准出版社, 2001.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. The standard test method for biomarker in sediment and crude oil by GC-MS: GB/T 18606-2001[S]. Beijing: China Standards Press, 2001.
    [33] Frignani M, Giglio F, Langone L, et al. Late Pleistocene-Holocene sedimentary fluxes of organic carbon and biogenic silica in the northwestern Ross Sea, Antarctica[J]. Annals of Glaciology, 1998, 27: 697−703. doi: 10.3189/1998AoG27-1-697-703
    [34] Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 1971, 8(3): 183−189. doi: 10.1007/BF00355214
    [35] Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments–II[J]. Organic Geochemistry, 1987, 11(6): 513−527. doi: 10.1016/0146-6380(87)90007-6
    [36] 卢鸿, 孙永革, 彭平安. 单甲基支链烷烃的单体碳同位素研究[J]. 沉积学报, 2003, 21(2): 360−365. doi: 10.3969/j.issn.1000-0550.2003.02.028

    Lu Hong, Sun Yongge, Peng Ping’an. Molecular stable carbon isotopic compositions of mono-methyl branched alkanes[J]. Acta Sedimentologica Sinica, 2003, 21(2): 360−365. doi: 10.3969/j.issn.1000-0550.2003.02.028
    [37] Kuhn T K, Krull E S, Bowater A, et al. The occurrence of short chain-alkanes with an even over odd predominance in higher plants and soils[J]. Organic Geochemistry, 2010, 41(2): 88−952008. doi: 10.1016/j.orggeochem.2009.08.003
    [38] 郑邦, 周斌, 王可, 等. 晚全新世东海泥质区物源输入、源区植被变化及其影响因素:来自MD06-3039A孔的正构烷烃记录[J]. 第四纪研究, 2018, 38(5): 1293−1303. doi: 10.11928/j.issn.1001-7410.2018.05.21

    Zheng Bang, Zhou Bin, Wang Ke, et al. Changes of provenance input and source vegetation changes and their impact factors since late Holocene based on N-alkanes records from core MD06-3039A in the muddy area of the East China Sea[J]. Quaternary Sciences, 2018, 38(5): 1293−1303. doi: 10.11928/j.issn.1001-7410.2018.05.21
    [39] Ourisson G, Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates[J]. Annual Review of Microbiology, 1987, 41: 301−333. doi: 10.1146/annurev.mi.41.100187.001505
    [40] Smith A B, Littlewood D T J. Paleontological data and molecular phylogenetic analysis[J]. Paleobiology, 1994, 20(3): 259−273. doi: 10.1017/S009483730001277X
    [41] 许玩宏, 张忠英, 沈平, 等. 贵州三都早奥陶世同高组下燕高页岩段的生物标志化合物[J]. 沉积学报, 1997, 15(3): 72−77.

    Xu Wanhong, Zhang Zhongying, Shen Ping, et al. Biomarkers from the Xiayangao member of the early ordovician Tonggao formation in the Sandu area, Guizhou Province[J]. Acta Sedimentologica Sinica, 1997, 15(3): 72−77.
    [42] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 174-199.

    Lu Shuangfang, Zhang Min. Geochemistry of Oil and Gas[M]. Beijing: Petroleum Industry Press, 2008: 174-199.
    [43] Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM[J]. Quaternary Science Reviews, 2014, 100(17): 31−54.
    [44] Halberstadt A R W, Simkins L M, Greenwood S L, et al. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica[J]. The Cryosphere, 2016, 10(3): 1−36.
    [45] Domack E W, Jacobson E A, Shipp S, et al. Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2—sedimentologic and stratigraphic signature[J]. Geological Society of America Bulletin, 1999, 111(10): 1517−1536. doi: 10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2
    [46] 史久新. 南极冰架-海洋相互作用研究综述[J]. 极地研究, 2018, 30(3): 287−302.

    Shi Jiuxin. A review of ice shelf-ocean interaction in Antarctica[J]. Chinese Journal of Polar Research, 2018, 30(3): 287−302.
    [47] Conway H, Hall B L, Denton G H, et al. Past and future grounding-line retreat of the West Antarctic Ice Sheet[J]. Science, 1999, 286(5438): 280−283. doi: 10.1126/science.286.5438.280
    [48] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213−250.
    [49] 王绍武, 黄建斌, 闻新宇. 古气候的启示[J]. 气象, 2012, 38(3): 257−265. doi: 10.3969/j.issn.1674-7097.2012.03.001

    Wang Shaowu, Huang Jianbin, Wen Xinyu. Implications of paleoclimate[J]. Meteorological Monthly, 2012, 38(3): 257−265. doi: 10.3969/j.issn.1674-7097.2012.03.001
    [50] 吴文祥, 葛全胜. 全新世气候事件及其对古文化发展的影响[J]. 华夏考古, 2005, 21(3): 60−67. doi: 10.3969/j.issn.1001-9928.2005.03.007

    Wu Wenxiang, Ge Quansheng. Climate events of the recent epoch and their influence upon the development of ancient culture[J]. Huaxia Archaeology, 2005, 21(3): 60−67. doi: 10.3969/j.issn.1001-9928.2005.03.007
    [51] Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9): 811. doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2
    [52] Weiss H, Courty M A, Wetterstrom W, et al. The genesis and collapse of third millennium north mesopotamian civilization[J]. Science, 1993, 261(5124): 995−1004. doi: 10.1126/science.261.5124.995
    [53] 吴文祥, 刘东生. 4000a.B.P.前后降温事件与中华文明的诞生[J]. 第四纪研究, 2001, 21(5): 443−451. doi: 10.3321/j.issn:1001-7410.2001.05.008

    Wu Wenxiang, Liu Dongsheng. 4000a.B.P. event and its implications for the origin of ancient Chinese civilization[J]. Quaternary Scienses, 2001, 21(5): 443−451. doi: 10.3321/j.issn:1001-7410.2001.05.008
    [54] 葛倩, 刘敬圃, 初凤友, 等. 全新世事件3与古文化变迁[J]. 地质科技情报, 2010, 29(3): 15−22. doi: 10.3969/j.issn.1000-7849.2010.03.003

    Ge Qian, Liu Jingpu, Chu Fengyou, et al. Holocene Event 3 and ancient cultural transition[J]. Geological Science and Technology Information, 2010, 29(3): 15−22. doi: 10.3969/j.issn.1000-7849.2010.03.003
    [55] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in north Atlantic Holocene and Glacial climates[J]. Science, 1997, 278(5341): 1257−1266. doi: 10.1126/science.278.5341.1257
    [56] 田家康. 气候文明史[M]. 范春飚, 译. 北京: 东方出版社, 2012: 84-186.

    Tian Jiakang. History of Climate and Civilization[M]. Fan Chunbiao, trans. Beijing: Oriental Press, 2012: 84-186.
    [57] Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society of London Special Publications, 1987, 26(1): 137−151. doi: 10.1144/GSL.SP.1987.026.01.08
    [58] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2011(5): 151−156.
    [59] ten Haven H L, de Leeuw J W, Rullkötter J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149): 641−643. doi: 10.1038/330641a0
    [60] Putnam A E, Denton G H, Schaefer J M, et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal[J]. Nature Geoscience, 2010, 3(10): 700−704. doi: 10.1038/ngeo962
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  31
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-03-30
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回