留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晚第四纪南极阿蒙森海扇区冰盖与古生产力旋回变化

鞠梦珊 陈志华 赵仁杰 王湘芹 黄元辉 葛淑兰 唐正

鞠梦珊,陈志华,赵仁杰,等. 晚第四纪南极阿蒙森海扇区冰盖与古生产力旋回变化[J]. 海洋学报,2019,41(9):40–51,doi:10.3969/j.issn.0253−4193.2019.09.004
引用本文: 鞠梦珊,陈志华,赵仁杰,等. 晚第四纪南极阿蒙森海扇区冰盖与古生产力旋回变化[J]. 海洋学报,2019,41(9):40–51,doi:10.3969/j.issn. 0253−4193.2019.09.004
Ju Mengshan,Chen Zhihua,Zhao Renjie, et al. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica[J]. Haiyang Xuebao,2019, 41(9):40–51,doi:10.3969/j.issn.0253−4193.2019.09.004
Citation: Ju Mengshan,Chen Zhihua,Zhao Renjie, et al. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica[J]. Haiyang Xuebao,2019, 41(9):40–51,doi:10.3969/j.issn. 0253−4193.2019.09.004

晚第四纪南极阿蒙森海扇区冰盖与古生产力旋回变化

doi: 10.3969/j.issn.0253-4193.2019.09.004
基金项目: 国家自然科学基金项目(41676191);南北极环境综合考察与评估(JDKC01,JDKC03);国家南极监测网(JDKC05)。
详细信息
    作者简介:

    鞠梦珊(1994—),女,山东省海阳市人,主要从事南极海洋沉积学研究。E-mail:jumengshan16@163.com

    通讯作者:

    陈志华,研究员,主要从事极地海洋地质学与沉积物地球化学研究。E-mail:chenzia@fio.org.cn

  • 中图分类号: P736.22

Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica

  • 摘要: 本文通过对阿蒙森海西北部陆隆AMS01岩心沉积物颜色、粒度及地球化学等多种指标分析,重建了该地区氧同位素9期(MIS9,大约距今34万年)以来冰盖与古生产力演变历史,结果表明:(1)岩心沉积物粒度与古生产力替代指标表现出明显的冰期–间冰期旋回变化特征;(2)MIS9、MIS7和MIS5等间冰期沉积速率较小,沉积物呈褐色,冰筏碎屑含量低,生源组分含量高,反映出该时期阿蒙森海地区气候温暖,冰盖发生了大规模退缩,冰盖–冰架–冰山等陆源冰对沉积物的影响减弱,海冰覆盖减弱,有利于浮游植物的生长和繁殖;(3)MIS8c、MIS8a、MIS6、MIS2等冰期沉积速率大,沉积物呈灰色,沉积物随之变粗,冰筏碎屑含量高,生源组分含量低,说明该时期冰盖大幅扩张,陆隆区成为近冰盖/冰架沉积环境,海冰和冰山密集,海洋生产力显著降低;(4)冰期、间冰期内,冰盖与古生产力也有不同程度的波动;特别是MIS8b期发育浅褐色间冰阶沉积,冰筏碎屑含量低,生产力水平与间冰期基本持平,说明阿蒙森海地区冰盖、海洋对气候变化的响应比东南极地区敏感。
  • 图  1  阿蒙森海取样站位与环流分布

    红色圆点代表本文研究站位AMS01。海区环流综合文献[16-21]绘制。黑色实线代表南极陆坡锋(ASF)[17],紫色实线箭头代表变性绕极深层水(MCDW)[16, 18],黄色实线箭头代表沿岸流(CC)流向[16],黑色虚线箭头代表罗斯涡流(RG)方向[19],红色实线箭头代表南极绕极流南边界(SBACC)[20];白色点线和白色虚线分 别代表南极冬季海冰覆盖线(WSI)和夏季海冰覆盖线(SSI)[21]

    Fig.  1  Map of the Amundsen Sea showing location of sediment core AMS01 and marine circulation

    Sediment core AMS01 is marked by the red dot. The circulation is edited from references [16-21]. Black line indicates Antarctic Slope Front (ASF)[17]; Modified Circumpolar Deep Water (MCDW) [16, 18]and Coastal Current (CC)[16] are indicated by the purple and yellow arrows, respectively; black dashed arrow indicates the Ross Gyre (RG)[19]; red arrows indicate the Southern Boundary (SB) of Antarctic Circumpolar Current (ACC)[20]; winter sea ice (WSI) and summer sea ice (SSI) are indicated by white dotted line and dashed line, respectively[21]

    图  2  AMS01岩心岩性地层及年代框架

    Fig.  2  Lithogic stratigraphy and age model for Core AMS01

    图  3  AMS01岩心粒度组成与冰筏碎屑含量变化

    a. Dome C冰芯温差记录;b.砂含量;c.粉砂含量;d.黏土含量;e.冰筏碎屑(>125 μm)含量;f.可分选粉砂含量;g.可分选粉砂平均粒径

    Fig.  3  Downcore variations of grain size and ice-rafted detritus in Core AMS01

    a. Dome C △T record; b. sand content; c. silt content; d. clay content; e. ice-rafted detritus (>125 μm) content; f. sortable silt content; g. sortable silt mean size

    图  4  AMS01岩心沉积物各粒级之间的相关性分析

    Fig.  4  The correlations between different grain size components

    图  5  AMS01岩心多种生产力替代指标的变化及其与东南极IODP U1361A孔的对比

    a. Dome C冰芯温差记录;b.AMS01岩心生源硅含量;c. AMS01岩心Ba/Al比值;d. AMS01岩心颜色反射率参数b*;e.U1361A岩心Ba/Al比值

    Fig.  5  Downcore variation of paleoproductivity proxies in Core AMS01, and the comparison with IODP Core U1361A in East Antarctic

    a. Dome C △T record; b. biogenic silica content in Core AMS01; c. Ba/Al in Core AMS01; d. b* in Core AMS01; e. Ba/Al in Core U1361A

    表  1  AMS01岩心AMS14C测年数据与年龄校正

    Tab.  1  AMS14C and calibrated ages of Core AMS01

    序号深度/cm测年材料AMS14C年龄/a BP碳储库年龄/a日历年龄/a BP
    10~2有孔虫12 480±401 30012 680±94
    220~22有孔虫18 860±601 30020 700±200
    336~38有孔虫35 250±2501 30037 990±412*
    444~46有孔虫38 840±6801 30041 620±547*
      注:*表示该年龄超出26 ka BP的日历年龄准确校正区间(建议校正区间),只作参考,不作为岩心年代控制点。
    下载: 导出CSV

    表  2  AMS01岩心各层段年龄与沉积速率估算

    Tab.  2  The ages and calculated sedimentation rates for main sections in Core AMS01

    控制点特征深度
    /cm
    年龄
    /ka BP
    平均沉积速率
    /cm·ka−1
    测年结果112.68
    测年结果2120.702.49
    MIS2/MIS5地层分界2321.5/71
    MIS5/MIS6地层分界801300.97
    MIS6/MIS7地层分界1651911.39
    MIS7/MIS8地层分界2382451.35
    MIS8a/MIS8b亚层分界2862791.41
    MIS8b/MIS8c亚层分界3032921.31
    MIS8/MIS9地层分界3403033.36
    MIS9底界3733370.97
    下载: 导出CSV
  • [1] Smith J A, Hillenbrand C D, Kuhn G, et al. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment[J]. Quaternary Science Reviews, 2010, 30(5): 488−505.
    [2] 王亚凤, 温家洪, 刘吉英. 南极冰盖与冰川的快速变化[J]. 极地研究, 2006, 18(1): 63−74.

    Wang Yafeng, Wen Jiahong, Liu Jiying. Rapid changes of the Antarctic ice sheet and glaciers[J]. Chinese Journal of Polar Research, 2006, 18(1): 63−74.
    [3] Pritchard H D, Ligtenberg S R M, Fricker H A, et al. Antarctic ice-sheet loss driven by basal melting of ice shelves[J]. Nature, 2012, 484(7395): 502−505. doi: 10.1038/nature10968
    [4] Paolo F S, Fricker H A, Padman L. Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348(6232): 327−331. doi: 10.1126/science.aaa0940
    [5] Jenkins A, Shoosmith D, Dutrieux P, et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability[J]. Nature Geoscience, 2018, 11: 733−738. doi: 10.1038/s41561-018-0207-4
    [6] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429−436. doi: 10.1038/20859
    [7] Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years[J]. Science, 2007, 317(5839): 793−796. doi: 10.1126/science.1141038
    [8] Wilson D J, Bertram R A, Needham E F, et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials[J]. Nature, 2018, 561(7723): 383−386. doi: 10.1038/s41586-018-0501-8
    [9] Larter R D, Anderson J B, Graham A G C, et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100: 55−86. doi: 10.1016/j.quascirev.2013.10.016
    [10] Hillenbrand C D, Smith J A, Hodell D A, et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions[J]. Nature, 2017, 547(7661): 43−48. doi: 10.1038/nature22995
    [11] Scherer R P, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic ice sheet[J]. Science, 1998, 281(5373): 82−85. doi: 10.1126/science.281.5373.82
    [12] Hillenbrand C D, Fütterer D K, Grobe H, et al. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea[J]. Geo-Marine Letters, 2002, 22(2): 51−59. doi: 10.1007/s00367-002-0097-7
    [13] Hillenbrand C D, Kuhn G, Frederichs T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?[J]. Quaternary Science Reviews, 2009, 28(13): 1147−1159.
    [14] Vaughan D G. West Antarctic Ice Sheet collapse–the fall and rise of a paradigm[J]. Climatic Change, 2008, 91(1/2): 65−79.
    [15] Nitsche F O, Jacobs S S, Larter R D, et al. Bathymetry of the Amundsen Sea continental shelf: Implications for geology, oceanography, and glaciology[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10): 1−10.
    [16] Arneborg L, Wåhlin A K, Björk G, et al. Persistent inflow of warm water onto the central Amundsen shelf[J]. Nature Geoscience, 2012, 5(12): 876−880. doi: 10.1038/ngeo1644
    [17] Martinson D G. Antarctic circumpolar current's role in the Antarctic ice system: An overview[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 335-336: 71−74. doi: 10.1016/j.palaeo.2011.04.007
    [18] Stlaurent P, Yager P L, Sherrell R M, et al. Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica)[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7135−7162. doi: 10.1002/2017JC013162
    [19] Dotto T S, Alberto N G, Sheldon B, et al. Variability of the Ross Gyre, Southern Ocean: drivers and responses revealed by satellite altimetry[J]. Geophysical Research Letters, 2018, 45(12): 6195−6201.
    [20] Orsi A H, Whitworth T, Nowlin W D. On the Meridional Extent and Fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W
    [21] Comiso J C, Cavalieri D J, Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(2): 243−252.
    [22] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1989, 36(9): 1415−1426. doi: 10.1016/0198-0149(89)90092-7
    [23] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215−230. doi: 10.1017/S0033822200013904
    [24] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [25] Berkman P A, Forman S L. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean[J]. Geophysical Research Letters, 1996, 23(4): 363−366. doi: 10.1029/96GL00151
    [26] Hillenbrand C D, Grobe H, Diekmann B, et al. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) – Relation to modern environmental conditions[J]. Marine Geology, 2003, 193(3): 253−271.
    [27] Parkinson C L. Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986[J]. Journal of Geophysical Research Oceans, 1994, 99(C8): 16327−16339. doi: 10.1029/94JC01146
    [28] van der Plicht, J Beck, J W Bard, et al. NOTCAL04—comparison/calibration 14C records 26–50 ka cal BP[J]. Radiocarbon, 2004, 46: 1225−1238. doi: 10.1017/S0033822200033117
    [29] Chiu T C, Fairbanks R G, Mortlock R A, et al. Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals[J]. Quaternary Science Reviews, 2005, 24(16): 1797−1808.
    [30] Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24(16): 1781−1796.
    [31] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1−17.
    [32] 刘合林, 陈志华, 葛淑兰, 等. 晚第四纪普里兹湾北部陆坡岩心沉积学记录及古海洋学意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 209−217.

    Liu Helin, Chen Zhihua, Ge Shulan, et al. Late Quaternary sedimentary records and paleoceanographic implications from the core on continental slope off the Prydz Bay, East Antarctic[J]. Marine Geology and Quaternary Geology, 2015, 35(3): 209−217.
    [33] 赵仁杰, 陈志华, 刘合林, 等. 15 ka以来罗斯海陆架岩心沉积学记录及古海洋学意义[J]. 海洋学报, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008

    Zhao Renjie, Chen Zhihua, Liu Helin, et al. Sedimentary record and paleoceanographic implications of the core on the continental shelf off the Ross Sea since 15 ka[J]. Haiyang Xuebao, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008
    [34] Witus A E, Branecky C M, Anderson J B, et al. Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica[J]. Quaternary Science Reviews, 2014, 85(2): 99−118.
    [35] McCave I N, Manighetti B, Robinson S G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3): 593−610. doi: 10.1029/94PA03039
    [36] Mccave I N, Hall I R. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): 1−38.
    [37] Denis D, Crosta X, Schmidt S, et al. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica[J]. Quaternary Science Reviews, 2009, 28(13): 1291−1303.
    [38] Noormets R, Dowdeswell J A, Larter R D, et al. Morphology of the upper continental slope in the Bellingshausen and Amundsen Seas – Implications for sedimentary processes at the shelf edge of West Antarctica[J]. Marine Geology, 2009, 258(1/4): 100−114.
    [39] Anderson J B, Shipp S S. The West Antarctic ice sheet: behavior and environment[J]. Antarctic Research Series, 2001, 77: 45−57.
    [40] Dowdeswell J A, Evans J, O Cofaigh C, et al. Morphology and sedimentary processes on the continental slope off Pine Island Bay, Amundsen Sea, West Antarctica[J]. Geological Society of America Bulletin, 2006, 118(5/6): 606−619.
    [41] Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6244): 153−164.
    [42] Voosen P. Antarctic ice melt 125,000 years ago offers warning[J]. Science, 2018, 361(6421): 1339−1339.
    [43] Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3): 195−211.
    [44] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163−181. doi: 10.1029/92PA00181
    [45] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
    [46] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869−3878. doi: 10.1016/0016-7037(96)00236-0
    [47] Anderson R F, Chase Z, Fleisher M Q, et al. The Southern Ocean's biological pump during the last glacial maximum[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1909−1938.
    [48] Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083): 491−496. doi: 10.1038/nature04614
    [49] 武力, 王汝建, 肖文申, 等. 东南极普里兹湾陆坡扇晚第四纪高分辨率地层年龄模式[J]. 海洋地质与第四纪地质, 2015, 35(3): 197−208.

    Wu Li, Wang Rujian, Xiao Wenshen, et al. High resolution age model of late Quaternary mouth fan at Prydz Trough, Eastern Antarctica[J]. Marine Geology and Quaternary Geology, 2015, 35(3): 197−208.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  29
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-02-28
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回