留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北冰洋与邻近海区海洋–海冰模式的试算与校验

罗晓凡 胡宪敏 聂红涛 赵伟 张永莉 王雅丽 秦钰 董春明 鹿有余 魏皓

罗晓凡,胡宪敏,聂红涛,等. 北冰洋与邻近海区海洋–海冰模式的试算与校验[J]. 海洋学报,2019,41(9):1–12,doi:10.3969/j.issn.0253−4193.2019.09.001
引用本文: 罗晓凡,胡宪敏,聂红涛,等. 北冰洋与邻近海区海洋–海冰模式的试算与校验[J]. 海洋学报,2019,41(9):1–12,doi:10.3969/j.issn.0253−4193. 2019.09.001
Luo Xiaofan,Hu Xianmin,Nie Hongtao, et al. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans[J]. Haiyang Xuebao,2019, 41(9):1–12,doi:10.3969/j.issn.0253−4193.2019.09.001
Citation: Luo Xiaofan,Hu Xianmin,Nie Hongtao, et al. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans[J]. Haiyang Xuebao,2019, 41(9):1–12,doi:10.3969/j.issn.0253−4193. 2019.09.001

北冰洋与邻近海区海洋–海冰模式的试算与校验

doi: 10.3969/j.issn.0253-4193.2019.09.001
基金项目: 国家自然科学基金项目(41630969,41806225)。
详细信息
    作者简介:

    罗晓凡(1987—),女,内蒙古自治区通辽市人,讲师,主要从事海洋生态动力学模拟方面研究。E-mail:xiaofan.luo@tju.edu.cn

    通讯作者:

    魏皓(1964—),女,天津市人,教授,从事物理海洋学和海洋生态动力学方面研究。E-mail:hao.wei@tju.edu.cn

  • 中图分类号: P731.15

Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans

  • 摘要: 本文将目前先进的大尺度海洋、海冰模式(NEMO3.6和LIM3)应用于北大西洋–北冰洋–北太平洋(简称NAPA),并进行了试验后报模拟。所建立的模式NAPA1/4和NAPA1/12的水平分辨率分别为(1/4)°和(1/12)°经、纬度,计算范围覆盖太平洋45°N以北海区、整个北冰洋及北大西洋;其中,NAPA1/4和NAPA1/12在北大西洋的边界分别为26°N和7°N。目前,已利用NAPA1/4完成了1993–2015年的后报模拟。本文基于观测数据和已发表文献对模拟结果中的北冰洋海冰变化、环流结构以及水文特征进行了校验。结果表明,NAPA1/4能够再现北冰洋的主要热力与动力过程,可以用来分析海冰、水团、大西洋/太平洋入/出流等的季节与年际变化规律。利用NAPA1/12进行了1993–1996年的模拟计算。初步结果分析表明,提高分辨率可更为精细地刻画北冰洋的海冰、水团和环流的结构。
  • 图  1  NAPA1/4模拟海区及水深(a)和NAPA1/12模拟海区及水平网格尺寸(b)

    Fig.  1  Domain and bathymetry of NAPA1/4 (a), and domain and horizontal grid size of NAPA1/12 (b)

    图  2  基于CDR(a–d)与NAPA1/4(e–h)所得海冰密集度空间分布

    Fig.  2  Spatial distributions of sea-ice concentration based on CDR (a–d) and NAPA1/4 (e–h)

    图  3  海冰面积时间序列

    a.1994–2015年多年平均海冰面积逐月变化;b.3月海冰面积年际变化;c.9月海冰面积年际变化。红色圆点实线代表模拟结果;蓝色三角实线表示CDR观测数据;绿色方形实线表示GLORYS 2v4再分析数据;图中虚线表示对应颜色数据的线性拟合趋势

    Fig.  3  Time series of sea-ice area

    a.Annual cycle averaged over 1994–2015; b, c. interannual variation in March and September. The solid lines with red dots, blue triangles and green squares represent NAPA1/4 hindcast, CDR and GLORYS 2v4 reanalysis, respectively. The coloured dotted lines represent long-term trends obtained through linear fitting

    图  4  白令海–楚科奇海–加拿大海盆水温分布

    a. 第四次北极考察站位分布,红色为7月调查站位,绿色为8月调查站位;b. 观测与NAPA1/4模拟的5 m层和50 m层温度分布的比较;c. 白令 海、楚科奇海、加拿大海盆区3个站位观测、GLORYS 2v4再分析与NAPA1/4模拟的温度剖面

    Fig.  4  Water temperature in the area covering Bering Sea, Chukchi Sea and Canada Basin

    a. Locations of sampling stations from the fourth CHINARE-Arctic expedition with red and green dots denoting samples deployed in July and August, respectively; b. temperature distribution at depths of 5 m (upper) and 50 m (lower) from CHINARE (left) and NAPA1/4 (right); c. temperature profiles at 3 stations in Bering Sea, Chukchi Sea and Canada Basin based on CHINARE, GLORYS 2v4 and NAPA1/4

    图  5  白令海–楚科奇海–加拿大海盆盐度分布

    a. 第四次北极考察站位分布,红色为7月调查站位,绿色为8月调查站位;b. 观测与NAPA1/4模拟的5 m层和50 m层盐度分布的比较;c. 白令 海、楚科奇海、加拿大海盆区3个站位观测、GLORYS 2v4再分析与NAPA1/4模拟的盐度剖面

    Fig.  5  Water salinity in the area covering Bering Sea, Chukchi Sea and Canada Basin

    a. Locations of sampling stations from the fourth CHINARE-Arctic expedition with red and green dots denoting samples deployed in July and August, respectively; b. salinity distribution at depths of 5 m (upper) and 50 m (lower) from CHINARE (left) and NAPA1/4 (right); c. salinity profiles at 3 stations in Bering Sea, Chukchi Sea and Canada Basin based on CHINARE, GLORYS 2v4 and NAPA1/4

    图  6  1996年7月中旬GLORYS 2v4(a)与NAPA1/4(b)温盐断面分布(断面位置见b图中的子图)

    Fig.  6  Temperature and salinity in mid-July of 1996 from GLORYS 2v4 reanalysis (a) and NAPA1/4 (b) along the section (thick green line) shown in the inserted figure of b

    图  7  NAPA1/4夏季30 m层环流结构

    黑色箭头为流速方向,颜色为流速大小。蓝色、红色、绿色、粉色、黄色、白色箭头分别表示白令海峡入流、波弗特流涡、穿极漂流、挪威–北 大西洋流、东格陵兰流、加拿大北极群岛贯穿流

    Fig.  7  NAPA1/4 summer ocean circulation at 30 m depth

    The ocean circulation direction denoted by black arrow and speed by colour shading. The blue, red, green, pink, yellow and white arrows represent Bering Strait inflow, Beaufort Gyre, Transpolar Drift, Norwegian–Northern Atlantic Current, East Greenland Current and Canadian Arctic Archipelago throughflow, respectively

    图  8  基于NAPA1/4与锚系观测数据估算的太平洋入流通量逐月(a)和年均(b)时间序列

    Fig.  8  Monthly (a) and annual-mean (b) Pacific inflow volume flux estimated from NAPA1/4 and mooring observations

    图  9  NAPA1/4(a)和NAPA1/12(b)模拟的1996年6月初海冰厚度

    Fig.  9  Sea-ice thickness in early June of 1996 simulated by NAPA1/4 (a) and NAPA1/12 (b)

    图  10  NAPA1/4(a)和NAPA1/12(b)模拟的1996年6月初30 m层相对涡度

    Fig.  10  Relative vorticity at 30 m depth in early June of 1996 simulated by NAPA1/4 (a) and NAPA1/12 (b)

    图  11  NAPA1/12模拟的1996年7月中旬温度(a)和盐度(b)的断面分布(断面位置见图6b子图)

    Fig.  11  Distribution of temperature (a) and salinity (b) in mid-July of 1996 from NAPA1/12 along the section shown in the inserted figure of Fig. 6b

  • [1] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: a research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96.
    [2] 赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985−995.

    Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985−995.
    [3] Carmack E, McLaughlin F. Towards recognition of physical and geochemical change in Subarctic and Arctic Seas[J]. Progress in Oceanography, 2011, 90(1/4): 90−104.
    [4] Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
    [5] Wood K R, Bond N A, Danielson S L, et al. A decade of environmental change in the Pacific Arctic region[J]. Progress in Oceanography, 2015, 136: 12−31. doi: 10.1016/j.pocean.2015.05.005
    [6] 陈立奇, 祁第, 高众勇, 等. 快速融冰背景下北冰洋夏季表层海水CO2分压的变异假设[J]. 科学通报, 2016, 61(21): 2419−2425.

    Chen Liqi, Qi Di, Gao Zhongyong, et al. A hypothesis on variability of surface water pCO2 under the rapid sea-ice retreat during summer in the Arctic Ocean[J]. Chinese Science Bulletin, 2016, 61(21): 2419−2425.
    [7] Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129: 23−32. doi: 10.1016/j.csr.2016.09.010
    [8] 聂红涛, 王蕊, 赵伟, 等. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084−1092. doi: 10.11867/j.issn.1001-8166.2017.10.1084

    Nie Hongtao, Wang Rui, Zhao Wei, et al. Key scientific problems and challenges of studying carbon cycle mechanism in Pacific sector of the Arctic[J]. Advances in Earth Science, 2017, 32(10): 1084−1092. doi: 10.11867/j.issn.1001-8166.2017.10.1084
    [9] Qi Di, Chen Liqi, Chen Baoshan, et al. Increase in acidifying water in the western Arctic Ocean[J]. Nature Climate Change, 2017, 7(3): 195−199. doi: 10.1038/nclimate3228
    [10] Ilicak M, Drange H, Wang Qiang, et al. An assessment of the Arctic Ocean in a suite of interannual CORE-Ⅱ simulations. Part Ⅲ: Hydrography and fluxes[J]. Ocean Modelling, 2016, 100: 141−161. doi: 10.1016/j.ocemod.2016.02.004
    [11] Wang Qiang, Ilicak M, Gerdes R, et al. An assessment of the Arctic Ocean in a suite of interannual CORE-Ⅱ simulations. Part I: Sea ice and solid freshwater[J]. Ocean Modelling, 2016, 99: 110−132. doi: 10.1016/j.ocemod.2015.12.008
    [12] Wang Qiang, Ilicak M, Gerdes R, et al. An assessment of the Arctic Ocean in a suite of interannual CORE-Ⅱ simulations. Part Ⅱ: Liquid freshwater[J]. Ocean Modelling, 2016, 99: 86−109. doi: 10.1016/j.ocemod.2015.12.009
    [13] Proshutinsky A, Steele M, Timmermans M L. Forum for Arctic modeling and observational synthesis (FAMOS): past, current, and future activities[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3803−3819. doi: 10.1002/2016JC011898
    [14] Dupont F, Higginson S, Bourdallé-Badie R, et al. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans[J]. Geoscientific Model Development, 2015, 8(5): 1577−1594. doi: 10.5194/gmd-8-1577-2015
    [15] Paquin J P, Lu Youyu, Higginson S, et al. Modelled variations of deep convection in the irminger sea during 2003-10[J]. Journal of Physical Oceanography, 2016, 46(1): 179−196. doi: 10.1175/JPO-D-15-0078.1
    [16] Chelton D B, deSzoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433−460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    [17] Nurser A J G, Bacon S. The rossby radius in the Arctic Ocean[J]. Ocean Science, 2014, 10(6): 967−975. doi: 10.5194/os-10-967-2014
    [18] Madec G. NEMO Ocean Engine[M]. France: Institut Pierre-Simon Laplace, 2008.
    [19] Vancoppenolle M, Fichefet T, Goosse H, et al. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation[J]. Ocean Modelling, 2009, 27(1/2): 33−53.
    [20] Rousset C, Vancoppenolle M, Madec G, et al. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities[J]. Geoscientific Model Development, 2014, 8(10): 2991−3005.
    [21] Madec G, Imbard M. A global ocean mesh to overcome the North Pole singularity[J]. Climate Dynamics, 1996, 12(6): 381−388. doi: 10.1007/BF00211684
    [22] Molines J M, Barnier B, Penduff T, et al. Definition of the interannual experiment ORCA025-G70, 1958-2004[R]. Grenoble, France: Laboratoire des Ecoulements Geophysiques et Industriels, 2007.
    [23] Dussin R, Barnier B, Brodeau L, et al. The Making of the DRAKKAR FORCING SET DFS5[R]. Stockholm, Sweden: Stockholm University, 2016.
    [24] Dai Aiguo, Qian Taotao, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2773−2792. doi: 10.1175/2008JCLI2592.1
    [25] Locarnini R A, Mishonov A V, Antonov J I, et al. WORLD OCEAN ATLAS 2013. Volume 1: temperature[R]. Silver Spring, MD: NOAA, 2013.
    [26] Zweng M M, Reagan J R, Antonov J I, et al. WORLD OCEAN ATLAS 2013. Volume 2: salinity[R]. Silver Spring, MD: NOAA, 2013.
    [27] Ferry N, Parent L, Garric G, et al. GLORYS2V1 global ocean reanalysis of the altimetric era (1993-2009) at meso scale[J]. Mercator Quarterly Newsletter, 2012, 44: 28−39.
    [28] Flather R A. A tidal model of the Northeast Pacific[J]. Atmosphere-Ocean, 1987, 25(1): 22−45. doi: 10.1080/07055900.1987.9649262
    [29] Uotila P, Iovino D, Vancoppenolle M, et al. Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2[J]. Geoscientific Model Development, 2017, 10(2): 1009−1031. doi: 10.5194/gmd-10-1009-2017
    [30] Blanke B, Delecluse P. Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics[J]. Journal of Physical Oceanography, 1993, 23(7): 1363−1388. doi: 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
    [31] Rodi W. Examples of calculation methods for flow and mixing in stratified fluids[J]. Journal of Geophysical Research: Oceans, 1987, 92(C5): 5305−5328. doi: 10.1029/JC092iC05p05305
    [32] Umlauf L, Burchard H. A generic length-scale equation for geophysical turbulence models[J]. Journal of Marine Research, 2003, 61(2): 235−265. doi: 10.1357/002224003322005087
    [33] Timmermans M L, Proshutinsky A, Golubeva E, et al. Mechanisms of Pacific summer water variability in the Arctic's Central Canada Basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7523−7548. doi: 10.1002/2014JC010273
    [34] Talley L D, Pickard G L, Emery W J, et al. Descriptive Physical Oceanography[M]. 6th ed. Amsterdam: Elsevier, 2011.
    [35] Corlett W B, Pickart R S. The Chukchi slope current[J]. Progress in Oceanography, 2017, 153: 50−65. doi: 10.1016/j.pocean.2017.04.005
    [36] Smedsrud L H, Esau I, Ingvaldsen R B, et al. The role of the Barents Sea in the Arctic climate system[J]. Reviews of Geophysics, 2013, 51(3): 415−449. doi: 10.1002/rog.20017
    [37] Wang Qiang, Wekerle C, Danilov S, et al. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4[J]. Geoscientific Model Development, 2018, 11(4): 1229−1255. doi: 10.5194/gmd-11-1229-2018
    [38] Schauer U, Beszczynska-Möller A, Walczowski W, et al. Variation of measured heat flow through the Fram Strait between 1997 and 2006[M]//Dickson R R, Meincke J, Rhines P. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate. Dordrecht: Springer, 2008: 65–85.
    [39] Wekerle C, Wang Qiang, Danilov S, et al. The Canadian Arctic archipelago throughflow in a multiresolution global model: Model assessment and the driving mechanism of interannual variability[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4525−4541. doi: 10.1002/jgrc.20330
    [40] Zhang Yu, Chen Changsheng, Beardsley R C, et al. Studies of the Canadian Arctic archipelago water transport and its relationship to basin-local forcings: Results from AO-FVCOM[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4392−4415. doi: 10.1002/2016JC011634
    [41] Cuny J, Rhines P B, Kwok R. Davis Strait volume, freshwater and heat fluxes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 519−542. doi: 10.1016/j.dsr.2004.10.006
    [42] Curry B, Lee C M, Petrie B. Volume, freshwater, and heat fluxes through Davis Strait, 2004-05[J]. Journal of Physical Oceanography, 2011, 41(3): 429−436. doi: 10.1175/2010JPO4536.1
    [43] Curry B, Lee C M, Petrie B, et al. Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004-10[J]. Journal of Physical Oceanography, 2014, 44(4): 1244−1266. doi: 10.1175/JPO-D-13-0177.1
    [44] Coachman L K. On the flow field in the Chirikov basin[J]. Continental Shelf Research, 1993, 13(5/6): 481−508.
    [45] Woodgate R A, Stafford K M, Prahl F G. A synthesis of year-round interdisciplinary mooring measurements in the Bering Strait (1990-2014) and the RUSALCA years (2004-2011)[J]. Oceanography, 2015, 28(3): 46−67. doi: 10.5670/oceanog
    [46] Shimada K, Kamoshida T, Itoh M, et al. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33(8): L08605.
    [47] Woodgate R A, Weingartner T, Lindsay R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat[J]. Geophysical Research Letters, 2010, 37(1): L01602.
    [48] Steele M, Morison J, Ermold W, et al. Circulation of summer Pacific halocline water in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02027.
    [49] Aagaard K, Weingartner T J, Danielson S L, et al. Some controls on flow and salinity in Bering Strait[J]. Geophysical Research Letters, 2006, 33(19): L19602. doi: 10.1029/2006GL026612
    [50] Rudels B, Larsson A M, Sehlstedt P I. Stratification and water mass formation in the Arctic Ocean: some implications for the nutrient distribution[J]. Polar Research, 1991, 10(1): 19−32. doi: 10.1111/por.1991.10.issue-1
    [51] Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic marine system: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 675−717. doi: 10.1002/2015JG003140
    [52] Wang Q, Danilov S, Jung T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends[J]. Geophysical Research Letters, 2016, 43(13): 7019−7027. doi: 10.1002/2016GL068696
    [53] Cooper L W, Whitledge T E, Grebmeier J M, et al. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait[J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12563−12573. doi: 10.1029/97JC00015
  • 加载中
图(11)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  75
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-04
  • 修回日期:  2018-11-30
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回