留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透明胞外聚合颗粒物碳输运新途径

孙军 郭聪聪 张桂成

孙军,郭聪聪,张桂成. 透明胞外聚合颗粒物碳输运新途径[J]. 海洋学报,2019,41(8):125–130,doi:10.3969/j.issn.0253−4193.2019.08.012
引用本文: 孙军,郭聪聪,张桂成. 透明胞外聚合颗粒物碳输运新途径[J]. 海洋学报,2019,41(8):125–130,doi:10.3969/j.issn.0253−4193. 2019.08.012
Sun Jun,Guo Congcong,Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao,2019, 41(8):125–130,doi:10.3969/j.issn.0253−4193.2019.08.012
Citation: Sun Jun,Guo Congcong,Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao,2019, 41(8):125–130,doi:10.3969/j.issn.0253−4193. 2019.08.012

透明胞外聚合颗粒物碳输运新途径

doi: 10.3969/j.issn.0253-4193.2019.08.012
基金项目: 国家自然科学基金(41876134,41676112,41276124);天津市“131”创新群体项目(20180314);天津市高等学校创新团队培养计划(TD12-5003);长江学者奖励计划(T2014253)。
详细信息
    作者简介:

    孙军(1972—),男,甘肃省华亭县人,教授,从事海洋生态学研究。E-mail: phytoplankton@163.com

  • 中图分类号: X55

A new pathway for carbon transportation of transparent exopolymer particles

  • 摘要: 目前大家普遍认为,透明胞外聚合颗粒物(Transparent Exopolymer Particles,TEP)因其独特的凝聚效应导致碳通量向海底输出。但是,近几年的研究表明TEP不仅影响了碳沉降途径,其本身能够悬浮甚至向海水表层迁移,导致其在海洋微表层(Surface Micro-layer, SML)积累,最终显著影响海洋表层碳通量。TEP和其他颗粒物聚集形成凝聚物后,其运动趋势则由凝聚物中TEP的含量占比,即最终颗粒物密度所决定。一个新的值得注意的现象是,密度低的TEP通过与其他微粒聚合形成表面活性物质(Surface-active Substances, SAS),会在海洋–大气界面形成薄膜,显著影响海–气CO2交换通量,甚至对全球气候变化造成影响。
  • 图  1  透明胞外聚合颗粒物(TEP)循环概念模型(参考Wurl等[11]和Mari等[27]

    Fig.  1  Conceptual model of transparent exopolymer particles (TEP) cycling in the ocean (reference from Wurl et al[11] and Mari et al[27])

  • [1] Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1130−1140.
    [2] Passow U, Alldredge A L. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean[J]. Marine Ecology Progress Series, 1994, 113(1/2): 185−198.
    [3] Schuster S, Herndl G J. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea[J]. Marine Ecology Progress Series, 1995, 124: 227−236. doi: 10.3354/meps124227
    [4] Engel A, Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1−10. doi: 10.3354/meps219001
    [5] Mari X, Migon C, Nicolas E. Reactivity of transparent exopolymeric particles: a key parameter of trace metal cycling in the lagoon of Nouméa, New Caledonia[J]. Marine Pollution Bulletin, 2009, 58(12): 1874−1879. doi: 10.1016/j.marpolbul.2009.07.017
    [6] Rochelle-Newall E J, Mari X, Pringault O. Sticking properties of transparent exopolymeric particles (TEP) during aging and biodegradation[J]. Journal of Plankton Research, 2010, 32(10): 1433−1442. doi: 10.1093/plankt/fbq060
    [7] Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205−248. doi: 10.1016/j.pocean.2014.08.005
    [8] Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
    [9] Passow U, Alldredge A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7): 1326−1335. doi: 10.4319/lo.1995.40.7.1326
    [10] Ryan J P, Fischer A M, Kudela R M, et al. Recurrent frontal slicks of a coastal ocean upwelling shadow[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12070. doi: 10.1029/2010JC006398
    [11] Wurl O, Miller L, Vagle S. Production and fate of transparent exopolymer particles in the ocean[J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C00H13.
    [12] Wurl O, Miller L, Röttgers R, et al. The distribution and fate of surface-active substances in the sea-surface microlayer and water column[J]. Marine Chemistry, 2009, 115(1/2): 1−9.
    [13] Williams P M, Carlucci A F, Henrichs S M, et al. Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California[J]. Marine Chemistry, 1986, 19(1): 17−98. doi: 10.1016/0304-4203(86)90033-2
    [14] Cunliffe M, Murrell J C. The sea-surface microlayer is a gelatinous biofilm[J]. The ISME Journal, 2009, 3(9): 1001−1003. doi: 10.1038/ismej.2009.69
    [15] 孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036

    Sun Jun. Transparent exopolymer particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036
    [16] 孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18): 5372−5378.

    Sun Jun. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18): 5372−5378.
    [17] 孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001

    Sun Jun, Li Xiaoqian, Chen Jianfang, et al. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001
    [18] Michaels A F, Bates N R, Buesseler K O, et al. Carbon-cycle imbalances in the Sargasso Sea[J]. Nature, 1994, 372(6506): 537−540. doi: 10.1038/372537a0
    [19] Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4): 327−346. doi: 10.1016/S0278-4343(00)00101-1
    [20] Nodder S D, Waite A M. Is southern ocean organic carbon and biogenic silica export enhanced by iron-stimulated increases in biological production? Sediment trap results from SOIREE[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48(11/12): 2681−2701.
    [21] Karl D, Christian J R, Dore J E, et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43(2/3): 539−568.
    [22] Buesseler K O, Barber R T, Dickson M L, et al. The effect of marginal ice-edge dynamics on production and export in the southern ocean along 170°W[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(3/4): 579−603.
    [23] Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752−755. doi: 10.1038/nature05317
    [24] Rost B, Zondervan I, Wolf-Gladrow D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions[J]. Marine Ecology Progress Series, 2008, 373: 227−237. doi: 10.3354/meps07776
    [25] Wood A, Van Valen L M. Paradox lost? On the release of energy-rich compounds by phytoplankton[J]. Marine Microbial Food Webs, 1990, 4: 103−116.
    [26] Carlson D J. The early diagenesis of organic matter: reaction at the air-sea interface[M]//Engel M H, Macko S A. Organic Geochemistry: Principles and Applications. Boston, MA: Springer, 1993: 255–268.
    [27] Mari X, Passow U, Migon C, et al. Transparent exopolymer particles: effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151: 13−37. doi: 10.1016/j.pocean.2016.11.002
    [28] Azetsu-Scott K, Passow U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3): 741−748. doi: 10.4319/lo.2004.49.3.0741
    [29] William H, Sutcliffe Jr, Edward R, et al. Sea surface chemistry and Langmuir circulation[J]. Deep-Sea Research and Oceanographic Abstracts, 1963, 10(3): 233−243. doi: 10.1016/0011-7471(63)90359-0
    [30] Obernosterer I, Catala P, Reinthaler T, et al. Enhanced heterotrophic activity in the surface microlayer of the Mediterranean Sea[J]. Aquatic Microbial Ecology, 2005, 39(3): 293−302.
    [31] Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep-Sea Research Part II, 2002, 49(1): 219−236.
    [32] Mari X, Robert M. Metal induced variations of TEP sticking properties in the southwestern lagoon of New Caledonia[J]. Marine Chemistry, 2008, 110(1/2): 98−108.
    [33] Ploug H, Iversen M H, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria[J]. Limnology and Oceanography, 2008, 53(5): 1878−1886. doi: 10.4319/lo.2008.53.5.1878
    [34] Reigstad M. Plankton community and vertical flux of biogenic matter in north Norwegian fjords: Regulating factors, temporal and spatial variations[D]. Tromsø: University of Tromsø, 2000.
    [35] Jokulsdottir T. Sinking biological aggregates in the ocean—a modeling study[D]. Chicago, Illinois: The University of Chicago, 2011.
    [36] Engel A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom[J]. Journal of Plankton Research, 2000, 22(3): 485−497. doi: 10.1093/plankt/22.3.485
    [37] Engel A, Delille B, Jacquet S, et al. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment[J]. Aquatic Microbial Ecology, 2004, 34(1): 93−104.
    [38] Bienfang P K. SETCOL—a technologically simple and reliable method for measuring phytoplankton sinking rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(10): 1289−1294. doi: 10.1139/f81-173
    [39] Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, Part II, 1851, 9: 8−106.
    [40] Alldredge A L, Silver M W. Characteristics, dynamics and significance of marine snow[J]. Progress in Oceanography, 1988, 20(1): 41−82. doi: 10.1016/0079-6611(88)90053-5
    [41] Alldredge A L, Gotschalk C. In situ settling behavior of marine snow[J]. Limnology and Oceanography, 1988, 33(3): 339−351. doi: 10.4319/lo.1988.33.3.0339
    [42] Cheng N S. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering, 1997, 123(2): 149−152. doi: 10.1061/(ASCE)0733-9429(1997)123:2(149)
    [43] Ferguson R I, Church M. A simple universal equation for grain settling velocity[J]. Journal of Sedimentary Research, 2004, 74(6): 933−937. doi: 10.1306/051204740933
    [44] Mari X. Does ocean acidification induce an upward flux of marine aggregates?[J]. Biogeosciences, 2008, 5(4): 1023−1031. doi: 10.5194/bg-5-1023-2008
    [45] Hunter K, Liss P. Polarographic measurement of surface-active material in natural waters[J]. Water Research, 1981, 15(2): 203−215. doi: 10.1016/0043-1354(81)90113-5
    [46] Gašparović B, Ćosović B, Vojvodić V. Contribution of organic acids to the pool of surface active substances in model and marine samples using o-nitrophenol as an electrochemical probe[J]. Organic Geochemistry, 1998, 29(5/7): 1025−1032.
    [47] Croot P L, Passow U, Assmy P, et al. Surface active substances in the upper water column during a southern ocean iron fertilization experiment (EIFEX)[J]. Geophysical Research Letters, 2007, 34(3): L03612.
    [48] Frew N M, Goldman J C, Dennett M R, et al. Impact of phytoplankton-generated surfactants on air-sea gas exchange[J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3337−3352. doi: 10.1029/JC095iC03p03337
    [49] Russell L M, Hawkins L N, Frossard A A, et al. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6652−6657. doi: 10.1073/pnas.0908905107
    [50] Tsai W T, Liu K K. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 24.
    [51] Calleja M L, Duarte C M, Prairie Y T, et al. Evidence for surface organic matter modulation of air-sea CO2 gas exchange[J]. Biogeosciences, 2009, 6(6): 1105−1114. doi: 10.5194/bg-6-1105-2009
  • 加载中
图(1)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  38
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-03-13
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回