留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆源排污对邻近海域底栖海藻群落的影响

邵魁双 巩宁 曲翊 李珂

邵魁双,巩宁,曲翊,等. 陆源排污对邻近海域底栖海藻群落的影响[J]. 海洋学报,2019,41(8):106–114,doi:10.3969/j.issn.0253−4193.2019.08.010
引用本文: 邵魁双,巩宁,曲翊,等. 陆源排污对邻近海域底栖海藻群落的影响[J]. 海洋学报,2019,41(8):106–114,doi:10.3969/j.issn.0253−4193. 2019.08.010
Shao Kuishuang,Gong Ning,Qu Yi, et al. The impact of nutrient inputs from sewage effluents on the adjacent intertidal seaweed communities[J]. Haiyang Xuebao,2019, 41(8):106–114,doi:10.3969/j.issn.0253−4193.2019.08.010
Citation: Shao Kuishuang,Gong Ning,Qu Yi, et al. The impact of nutrient inputs from sewage effluents on the adjacent intertidal seaweed communities[J]. Haiyang Xuebao,2019, 41(8):106–114,doi:10.3969/j.issn.0253−4193. 2019.08.010

陆源排污对邻近海域底栖海藻群落的影响

doi: 10.3969/j.issn.0253-4193.2019.08.010
基金项目: 国家重点研发计划项目(2016YFC1402104);中国科学院战略性先导科技专项(A类)(XDA13020401);国家自然科学基金(41301560)。
详细信息
    作者简介:

    邵魁双(1973—),辽宁省凤城市人,副研究员,博士,主要从事海藻生物学研究。E-mail: ksshao@nmemc.org.cn

  • 中图分类号: X55

The impact of nutrient inputs from sewage effluents on the adjacent intertidal seaweed communities

  • 摘要: 伴随着经济的发展,我国沿海海域富营养化日趋严重。为了明确富营养化对底栖海藻群落的影响及作用机制,本文选择了与大连凌水河口(污水河)毗邻的海藻床作为野外观测点,研究底栖海藻群落对营养盐自然衰减梯度的响应规律;在实验室内,选择了在排污口附近优势分布、营r-生态策略的绿藻缘管浒苔和仅在寡营养区域分布、营k-生态策略的红藻柔质仙菜作为实验材料,开展了营养吸收动力学和生长动力学研究。通过二者在营养盐吸收、利用和繁殖策略方面的比较研究,剖析了底栖海藻群落对不同营养环境的响应机制。结果显示:随着海水中营养盐浓度的降低,底栖海藻群落呈现种类数增加、优势种覆盖度降低的趋势。根据底栖海藻在群落水平对氮源营养的响应,认为现行海水水质标准中无机氮一类水质标准的限值应该由目前的14.29 μmol/L降低为6.69 μmol/L。在富营养环境中,营养盐浓度的上升促进了r-策略海藻幼体的竞争力和种群繁殖力,使其占据了大量的生态位,形成优势种群,导致底栖海藻多样性较低;在寡营养环境中,由于得不到充足的营养盐供应,r-策略海藻幼体的竞争力和种群繁殖力都受到制约,占据的空间生态位有限,为其他种类的生存提供了条件,而那些对营养盐需求较低但利用效率高的k-策略海藻则表现出更强的竞争力,在竞争中取得优势,能快速突破早期环境筛的限制,形成成体,因此,在寡营养海域,底栖海藻的多样性比较丰富。
  • 图  1  调查海域和采样站位

    Fig.  1  The study area and location of sampling

    图  2  各区域海藻种类数和优势绿藻覆盖度对不同浓度无机氮的响应

    Fig.  2  Response of species number of seaweed and coverage of dominant green algae to different concentrations of dissolved inorganic nitrogen

    图  3  两种海藻硝酸盐吸收动力学曲线

    Fig.  3  ${\rm {NO}}_3^- $ uptake kinetic curves of two species seaweeds

    图  4  两种海藻氨吸收动力学曲线

    Fig.  4  ${\rm {NH}}_4^+ $ uptake kinetic curves of two species seaweeds

    图  5  两种海藻磷吸收动力学曲线

    Fig.  5  $ {\rm {PO}}_4^{3-}$ uptake kinetic curves of two species seaweeds

    图  6  两种海藻氮营养生长动力学曲线

    Fig.  6  Growth kinetics curves of two species seaweeds to nitrate and ammonia

    表  1  各区域营养状况及底栖海藻分布情况

    Tab.  1  Nutritional status and distribution of seaweeds in various sections

    区域凌水河口海域旅顺黄金山海域
    1#2#3#4#
    营养状况/μmol·L–1$ {\rm {NO}} _3^- $121.02±24.9513.03±2.2810.12±1.515.96±0.784.24±1.66
    $ {\rm {NO}} _2^- $54.89±8.873.92±1.171.62±0.400.06±0.020.07±0.01
    ${\rm {NH}} _4^+ $66.09±5.853.86±0.911.99±0.410.68±0.160.47±0.08
    DIN242.00±29.9420.81±6.3613.74±3.736.69±0.884.79±1.56
    ${\rm {PO}} _4^{3-} $51.36±14.713.56±0.553.79±0.811.03±0.390.48±0.13
    N/P4.71±1.665.85±1.213.63±0.306.50±1.399.98±2.97
    海藻分布种类数/个25122730
    绿藻覆盖度66.0%±10.7%50.6%±4.5%34.1%±3.9%22.9%±3.2%17.3%±2.7%
    下载: 导出CSV

    表  2  两种海藻对营养盐的吸收动力学参数

    Tab.  2  Kinetics parameters for different nutrient uptake by two species

    营养源供试海藻Vmax/μmol·g–1·h–1(dw)Ks/μmol·L–1a (Vmax/ Ks)R2吸收方式
    ${\rm {NO}}_3^{-} $缘管浒苔30.9±0.9b3.5±0.5a8.90.97主动运输
    柔质仙菜11.3±0.3a6.5±0.9b1.70.97主动运输
    ${\rm {NH}}_4^+ $缘管浒苔1.7×S0.99被动扩散
    柔质仙菜70.5±3.2 b28.0±3.6 b2.50.97主动运输
    $ {\rm {PO}}_4^{3-} $缘管浒苔4.2±0.1a0.9±0.2 a4.70.96主动运输
    柔质仙菜6.5±0.9 a13.7±3.6 b0.50.94主动运输
    注:S表示培养基中对应的营养盐浓度;不同字母(a和b)表示差异显著(P<0.05)。
    下载: 导出CSV

    表  3  两种海藻氮营养生长动力学参数

    Tab.  3  Kinetics parameters for nitrogen growth of two species

    氮源背景生长率/d–1最大净生长率/d–1Kμ/μmol·L–1R2
    硝酸氮缘管浒苔3.5%±0.6%a10.4%±0.7%b20.7±6.5b0.99
    柔质仙菜1.5%±0.1%a2.3%±0.1%a9.6±1.7b0.99
    氨氮缘管浒苔3.9%±0.4%a7%±0.5% b26.2±8.7b0.93
    柔质仙菜1.6%±0.4%a2.1%±0.2%a17.6±4b0.87
      注:不同字母(a和b)表示差异显著(P<0.05)。
    下载: 导出CSV

    表  4  两种海藻的Kμ/Ks

    Tab.  4  Kμ/Ks of two species seaweeds

    种类缘管浒苔柔质仙菜
    Kμ/Ks5.921.47
    下载: 导出CSV
  • [1] 国家海洋局. 2017中国海洋生态环境状况公报[R]. 北京: 国家海洋局, 2018.

    State Oceanic Administration. Bulletin of Marine Environmental Status of China in 2017[R]. Beijing: State Oceanic Administration, 2018.
    [2] Lapointe B E, Barile P J, Matzie W R. Anthropogenic nutrient enrichment of seagrass and coral reef communities in the lower Florida keys: discrimination of local versus regional nitrogen sources[J]. Journal of Experimental Marine Biology and Ecology, 2004, 308(1): 23−58. doi: 10.1016/j.jembe.2004.01.019
    [3] Schramm W. Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC[J]. Journal of Applied Phycology, 1999, 11(1): 69−78. doi: 10.1023/A:1008076026792
    [4] Raven J A, Taylor R. Macroalgal growth in nutrient-enriched estuaries: a biogeochemical and evolutionary perspective[J]. Water, Air, and Soil Pollution: Focus, 2003, 3(1): 7−26. doi: 10.1023/A:1022167722654
    [5] Morand P, Briand X. Excessive growth of macroalgae: a symptom of environmental disturbance[J]. Botany Marina, 1996, 39(1/6): 491−516.
    [6] Morand P, Merceron M. Coastal eutrophication and excessive growth of macroalgae[J]. Recent Research Developments in Environmental Biology, 2004, 1(2): 395−449.
    [7] Liu Dongyan, Bai Jie, Song Shuqun, et al. The impact of sewage discharge on the macroalgae community in the Yellow Sea coastal area around Qingdao, China[J]. Water, Air, & Soil Pollution: Focus, 2007, 7(6): 683−692.
    [8] Rosenberg G, Probyn T A, Mann K H. Nutrient uptake and growth kinetics in brown seaweeds: response to continuous and single additions of ammonium[J]. Journal of Experimental Marine Biology and Ecology, 1984, 80(2): 125−146. doi: 10.1016/0022-0981(84)90008-X
    [9] Hwang S P L, Williams S L, Brinkhuis B H. Changes in internal dissolved nitrogen pools as related to nitrate uptake and assimilation in Gracilaria tikvahiae McLachlan[J]. Botany Marina, 1987, 30: 11−19.
    [10] Wallentinus I. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies[J]. Marine Biology, 1984, 80(2): 215−225. doi: 10.1007/BF02180189
    [11] Fong P, Boyer K E, Desmond J S, et al. Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae?[J]. Journal of Experimental Marine Biology and Ecology, 1996, 206(1/2): 203−221.
    [12] Littler M M, Littler D S. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model[J]. The American Naturalist, 1980, 116(1): 25−44. doi: 10.1086/283610
    [13] Raffaelli D G, Raven J A, Poole L J. Ecological impact of green macroalgal blooms[J]. Oceanography and Marine Biology, 1998, 36: 97−125.
    [14] Fletcher R L. The occurrence of “Green Tides”-A Review[M]//Schramm W, Nienhuis P H. Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication. Berlin, Heidelberg: Springer-Verlag, 1996: 7–43.
    [15] Duke C S, Litaker W, Ramus J. Effects of temperature, nitrogen supply, and tissue nitrogen on ammonium uptake rates of the chlorophyte seaweeds Ulva curvata and Codium decorticatum[J]. Journal Phycology, 1989, 25(1): 113−120. doi: 10.1111/jpy.1989.25.issue-1
    [16] Lotze H K, Schramm W. Ecophysiological traits explain species dominance patterns in macroalgal blooms[J]. Journal of Phycology, 2000, 36(2): 287−295.
    [17] Vadas R L, Johnson S, Norton T A. Recruitment and mortality of early post-settlement stages of benthic algae[J]. British Phycological Journal, 1992, 27(3): 331−351. doi: 10.1080/00071619200650291
    [18] Saito Y, Atobe S. Phytosociological study of intertidal marine algae. I. Usujiri benten-jima, hokkaid[R]. Hokkaido: Bulletin of the Faculty of Fisheries, Hokkaido University, 1971, 21: 37–69.
    [19] 邵魁双, 巩宁, 李珂, 等. 缘管浒苔和假根羽藻氮磷营养生理学研究[J]. 海洋学报, 2011, 33(3): 131−139.

    Shao Kuishuang, Gong Ning, Li Ke, et al. Nitrogen and phosphorus nutrition physiology of Enteromorpha linza and Bryopsis plumosa (Cholorophyta)[J]. Haiyang Xuebao, 2011, 33(3): 131−139.
    [20] 郭卫东, 章小明, 杨逸萍, 等. 中国近岸海域潜在性富营养化程度的评价[J]. 台湾海峡, 1998, 17(1): 64−70.

    Guo Weidong, Zhang Xiaoming, Yang Yiping, et al. Potential eutrophication assessment for Chinese coastal waters[J]. Journal of Oceanography in Taiwan Strait, 1998, 17(1): 64−70.
    [21] Pedersen M F, Borum J. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake[J]. Marine Ecology Progress Series, 1997, 161: 155−163. doi: 10.3354/meps161155
    [22] 邵魁双, 李熙宜. 大连海区潮间带底栖海藻生物群落的季节变化[J]. 大连水产学院学报, 2000, 15(1): 29−34. doi: 10.3969/j.issn.1000-9957.2000.01.005

    Shao Kuishuang, Li Xiyi. Seasonal variation of benthic seaweed community in the intertide in Dalian[J]. Journal of Dalian Fisheries University, 2000, 15(1): 29−34. doi: 10.3969/j.issn.1000-9957.2000.01.005
    [23] Nixon S W, Pilson M E Q. Nitrogen in estuarine and coastal marine ecosystems[M]//Carpenter E J, Capone D G. Nitrogen in the Marine Environment. New York: Plenum Press, 1983: 565–590.
    [24] Oviatt C, Doering P, Nowicki B, et al. An ecosystem level experiment on nutrient limitation in temperate coastal marine environments[J]. Marine Ecology Progress Series, 1995, 116: 171−179. doi: 10.3354/meps116171
    [25] Howarth R W, Anderson D, Cloern J, et al. Nutrient pollution of coastal rivers, bays, and seas[J]. Issues in Ecology, 2000, 7: 1−15.
    [26] 梁倩倩, 谢蓉蓉, 郑育毅. 河口氮循环特征及研究方法进展综述[J]. 化学工程与装备, 2017(10): 206−208.

    Liang Qianqian, Xie Rongrong, Zheng Yuyi. A review of the characteristics and research methods of nitrogen cycling in estuaries[J]. Chemical Engineering & Equipment, 2017(10): 206−208.
    [27] Oishi R, Tada C, Asano R, et al. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations[J]. Microbial Ecology, 2012, 63(4): 787−793. doi: 10.1007/s00248-011-9971-z
    [28] 国家环境保护局. GB 3097-1997, 海水水质标准[S]. 北京: 环境科学出版社, 2004.

    National Environmental Protection Agency. GB 3097-1997, Marine water quality standard[S]. Beijing: Environmental Science Press, 2004.
    [29] Lotze H K, Worm B. Complex interactions of climatic and ecological controls on macroalgal recruitment[J]. Limnology and Oceanography, 2002, 47(6): 1734−1741. doi: 10.4319/lo.2002.47.6.1734
    [30] 邵魁双. 海藻无性系的构建[D]. 青岛: 中国科学院海洋研究所, 2003: 88-90.

    Shao Kuishuang. The foundation of the clone of marine alga[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2003: 88-90.
    [31] MacArthur R H, Wilson E O. The Theory of Island Biogeography[M]. Princeton, NJ: Princeton University Press, 1967.
    [32] Reznick D, Bryant M J, Bashey F. r- and K-selection revisited: the role of population regulation in life-history evolution[J]. Ecology, 2002, 83(6): 1509−1520. doi: 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2
    [33] Bold H C, Wynne M J. Introduction to the Algae[M]. Englewood Cliffs, NJ: Prentice-Hall, 1978: 8–12.
    [34] Dayton P K. Ecology of kelp communities[J]. Annual Review of Ecology and Systematics, 1985, 16: 215−245. doi: 10.1146/annurev.es.16.110185.001243
    [35] 张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2004: 70–79.

    Zhang Dayong. Plant Life History Evolution and Reproductive Ecology[M]. Beijing: Science Press, 2004: 70–79.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  10
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-05-09
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回