留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素

刘杰 杨睿 邬黛黛 金光荣 张辉

刘杰,杨睿,邬黛黛,等. 琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素[J]. 海洋学报,2019,41(8):13–25,doi:10.3969/j.issn.0253−4193.2019.08.002
引用本文: 刘杰,杨睿,邬黛黛,等. 琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素[J]. 海洋学报,2019,41(8):13–25,doi:10.3969/j.issn.0253− 4193.2019.08.002
Liu Jie,Yang Rui,Wu Daidai, et al. Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin[J]. Haiyang Xuebao,2019, 41(8):13–25,doi:10.3969/j.issn.0253−4193.2019.08.002
Citation: Liu Jie,Yang Rui,Wu Daidai, et al. Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin[J]. Haiyang Xuebao,2019, 41(8):13–25,doi:10.3969/j.issn.0253− 4193.2019.08.002

琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素

doi: 10.3969/j.issn.0253-4193.2019.08.002
基金项目: 中国科学院天然气水合物重点实验室基金(Y807je1001);广州市珠江科技新星项目(201710010198);南海水合物成藏条件对比和甲烷渗漏预警研究(ISEE2018YB03);广东省促进经济发展专项资金(GDME-2018D002)。
详细信息
    作者简介:

    刘杰(1986—),男,湖北省仙桃市人,助理研究员,研究方向为海域天然气水合物成藏地质条件分析。E-mail:liujie1@ms.giec.ac.cn

  • 中图分类号: P744.4

Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin

  • 摘要: 为了探讨琼东南盆地华光凹陷海底天然气水合物稳定带的分布规律,定量研究了静水压力、底水温度、地温梯度和气源组分对水合物稳定带的影响程度。在此基础上,分析了华光凹陷现今甲烷水合物稳定带的厚度分布。最后,综合各因素的历史演化过程,初步探讨了华光凹陷1.05 Ma BP以来天然气水合物稳定带的演化。结果表明:(1)气源组分和海底温度的变化对研究区内水合物稳定带的影响较大;水合物稳定带厚度与海底温度呈良好的线性负相关性。(2)水深超过600 m的海域具备形成天然气水合物的温压条件;超过600 m水深的海域水合物稳定带厚度大部分超过 100 m,其中西北部稳定带的最大厚度超过300 m,是有利的水合物勘探区。(3)华光凹陷1.05 Ma BP以来天然气水合物稳定带厚度经历了快速增厚–窄幅变化–快速减薄和恢复的过程。麻坑群与水合物稳定变化敏感区在空间上具有较好的叠合关系。结合前人的研究成果,推测其形成与天然气水合物的分解释放有关。
  • 图  1  琼东南盆地(a)和研究区(b)的位置图及琼东南盆地地层综合柱状图(c)(据文献[1718]修改)

    Fig.  1  The locations and structural units of the Qiongdongnan Basin and the studying area (a) (modified from Shan et al[17]), bathymetric map of the studying area (b) (data from National Geophysical Data Center website) and generalized stratigraphic column for the Qiongdongnan Basin (c) (modified from Yang et al[18])

    图  2  海平面变化对天然气水合物稳定带厚度的影响

    a. 海平面下降120 m时,C14站位的甲烷水合物稳定带厚度变化;b. 海水深度与水合物稳定带厚度的关系;c. 1.05 Ma BP以来,C14站位处水合 物稳定带厚度变化特征(只考虑海平面变化的影响)

    Fig.  2  Effect of sea-level change on the thickness of gas hydrate stable zones

    a. The thickness of methane hydrate stable zone at C14 station decreases by about 30 m when sea level drops by 120 m; b. the relationship between the water depth and the thickness of hydrate stable zone; c. thickness variation characteristics of methane hydrate stable zone at C14 station since 1.05 Ma BP (only considering the influence of sea level change)

    图  3  海底温度对天然气水合物稳定带厚度的影响

    a. 不同海底温度下天然气水合物稳定带厚度的变化;b. 海底温度与水合物稳定带厚度的关系;c. ODP1148站位底栖有孔虫δ18O曲线(据 Jian等[28])和6 Ma BP以来海底温度变化趋势(注意中更新世气候转型,只考虑海底温度甲烷水合物稳定带厚度增大38.4 m)

    Fig.  3  Effect of seafloor temperature on the thickness of gas hydrate stable zones

    a. Thickness variation of gas hydrate stable zone under different seafloor temperatures; b. functional relationship between seafloor temperature and thickness of gas hydrate stable zone; c. trends of benthic foraminifera δ18O curve (after Jian et al[28]) and seafloor temperature change at ODP 1148 station since 6 Ma BP (at the Middle Pleistocene Revolution, the thickness of the methane hydrate stabilization zone increases by 38.4 m if only the seafloor temperature is taken into account)

    图  4  地温梯度对天然气水合物稳定带厚度的影响

    a. 不同地温梯度下甲烷水合物稳定带厚度变化;b. 地温梯度与甲烷水合物厚度的关系

    Fig.  4  Effect of geothermal gradient on the thickness of gas hydrate stable zones

    a. Thickness variation of methane hydrate stable zone under different geothermal gradients; b. relationship between geothermal gradient and methane hydrate stable zone thickness

    图  5  气源组分变化对天然气水合物稳定带厚度的影响

    a. 不同气体成分水合物的相平衡曲线;b. 过麻坑区剖面不同气体组分形成的水合物的稳定带底界深度(剖面位置见图1

    Fig.  5  Effect of gas composition on the thickness of gas hydrate stable zones

    a. Phase equilibrium curves of gas hydrates with different gas components; b. the depth of stable zone base for hydrates with different gas components arcoss pockmark area (see Fig. 1 for profile location)

    图  6  琼东南盆地华光凹陷天然气水合物稳定带厚度分布(麻坑的位置参考Sun等[51],用红色圆圈表示)

    Fig.  6  Isopach distribution of the gas hydrate stability zone in the Huaguang Sag of the Qiongdongnan Basin (red circle denotes pockmark; its location is from reference [51])

    图  7  华光凹陷 1.05 Ma BP以来天然气水合物稳定带的演化

    Fig.  7  The evolution of the gas hydrates stability zone in Huaguang Sag of the South China Sea since 1.05 Ma BP

  • [1] Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada[J]. Climate of the Past, 2012, 8(2): 667−682.
    [2] Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea[J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z
    [3] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429−2445. doi: 10.1002/ggge.v18.7
    [4] 宋海斌, 江为为, 张岭. 海洋天然气水合物的地球物理研究(Ⅳ): 双似海底反射[J]. 地球物理学进展, 2003, 18(3): 497−502. doi: 10.3969/j.issn.1004-2903.2003.03.027

    Song Haibin, Jiang Weiwei, Zhang Ling. Geophysical researches on marine gas hydrates (Ⅳ): double bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(3): 497−502. doi: 10.3969/j.issn.1004-2903.2003.03.027
    [5] Zander T, Haeckel M, Berndt C, et al. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea[J]. Earth and Planetary Science Letters, 2017, 462: 15−25. doi: 10.1016/j.jpgl.2017.01.006
    [6] 陈芳, 陆红锋, 刘坚, 等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学:中国地质大学学报, 2016, 41(10): 1619−1629.

    Chen Fang, Lu Hongfeng, Liu Jian, et al. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea[J]. Earth Science: Journal of China University of Geosciences, 2016, 41(10): 1619−1629.
    [7] 叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学: 中国地质大学学报, 2013, 38(6): 1299−1308.

    Ye Liming, Chu Fengyou, Ge Qian, et al. A rapid gas hydrate dissociation in the Northern South China Sea since the Late Younger Dryas[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(6): 1299−1308.
    [8] 金春爽, 汪集旸, 卢振权. 南海西沙海槽6 Ma以来天然气水合物稳定带演化初探[J]. 矿床地质, 2011, 30(1): 156−162. doi: 10.3969/j.issn.0258-7106.2011.01.013

    Jin Chunshuang, Wang Jiyang, Lu Zhenquan. A tentative discussion on the evolution of the natural gas hydrates stable zone in Xisha Trough of South China Sea since 6 Ma B.P.[J]. Mineral Deposits, 2011, 30(1): 156−162. doi: 10.3969/j.issn.0258-7106.2011.01.013
    [9] 龚跃华, 杨胜雄, 王宏斌, 等. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报: 地球科学版, 2018, 48(4): 1030−1042.

    Gong Yuehua, Yang Shengxiong, Wang Hongbin, et al. Prospect of gas hydrate resources in Qiong Dongnan Basin[J]. Journal of Jilin University: Earth Science Edition, 2018, 48(4): 1030−1042.
    [10] 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3): 483−489. doi: 10.3321/j.issn:0001-5733.2004.03.018

    Chen Duofu, Li Xuxuan, Xia Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. Chinese Journal of Geophysics, 2004, 47(3): 483−489. doi: 10.3321/j.issn:0001-5733.2004.03.018
    [11] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7): 2905−2914. doi: 10.6038/cjg2018L0374

    Yang Li, Liu Bin, Xu Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(7): 2905−2914. doi: 10.6038/cjg2018L0374
    [12] 孙春岩, 吴能有, 牛滨华, 等. 南海琼东南盆地气态烃地球化学特征及天然气水合物资源远景预测[J]. 现代地质, 2007, 21(1): 95−100. doi: 10.3969/j.issn.1000-8527.2007.01.011

    Sun Chunyan, Wu Nengyou, Niu Binhua, et al. Geochemical characteristics of gaseous hydrocarbons and hydrate resource prediction in the Qiong-Dongnan Basin of the South China Sea[J]. Geoscience, 2007, 21(1): 95−100. doi: 10.3969/j.issn.1000-8527.2007.01.011
    [13] 王秀娟, 吴时国, 王大伟, 等. 琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用[J]. 石油地球物理勘探, 2010, 45(1): 122−128.

    Wang Xiujuan, Wu Shiguo, Wang Dawei, et al. The role of polygonal faults in fluid migration and gas hydrate reservoir forming in Southeast Hainan Basin[J]. Oil Geophysical Prospecting, 2010, 45(1): 122−128.
    [14] 梁金强, 王宏斌, 苏丕波, 等. 天然气水合物成藏的控制因素研究[M]. 北京: 地质出版社, 2018.

    Liang Jinqiang, Wang Hongbin, Su Pibo, et al. Study on Controlling Factors of Gas Hydrate Reservoir Formation[M]. Beijing: Geological Publishing House, 2018.
    [15] 朱继田, 裴健翔, 孙志鹏, 等. 琼东南盆地新构造运动及其对晚期油气成藏的控制[J]. 天然气地球科学, 2011, 22(4): 649−656.

    Zhu Jitian, Pei Jianxiang, Sun Zhipeng, et al. Feature of neotectonism and its control on late hydrocarbon accumulation in Qiongdongnan Basin[J]. Natural Gas Geoscience, 2011, 22(4): 649−656.
    [16] Schimanski A, Stattegger K. Deglacial and Holocene evolution of the Vietnam shelf: stratigraphy, sediments and sea-level change[J]. Marine Geology, 2005, 214(4): 365−387. doi: 10.1016/j.margeo.2004.11.001
    [17] 单竞男, 张功成, 吴景富, 等. 南海北缘琼东南盆地热结构与莫霍面温度[J]. 地球物理学报, 2011, 54(8): 2102−2109. doi: 10.3969/j.issn.0001-5733.2011.08.017

    Shan Jingnan, Zhang Gongcheng, Wu Jingfu, et al. Thermal structure and Moho temperature of Qiongdongnan Basin, northern margin of the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(8): 2102−2109. doi: 10.3969/j.issn.0001-5733.2011.08.017
    [18] 杨涛涛, 吴敬武, 王彬, 等. 琼东南盆地华光凹陷构造特征及沉积充填[J]. 海洋地质与第四纪地质, 2012, 32(5): 13−18.

    Yang Taotao, Wu Jingwu, Wang Bin, et al. Structural pattern and sediment filling in Huaguang Sag of southern Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 13−18.
    [19] Zeng Lili, Wang Qiang, Xie Qiang, et al. Hydrographic field investigations in the Northern South China Sea by open cruises during 2004-2013[J]. Science Bulletin, 2015, 60(6): 607−615. doi: 10.1007/s11434-015-0733-z
    [20] Luo Min, Dale A W, Wallmann K, et al. Estimating the time of pockmark formation in the SW Xisha Uplift (South China Sea) using reaction-transport modeling[J]. Marine Geology, 2015, 364: 21−31. doi: 10.1016/j.margeo.2015.03.006
    [21] 翟普强, 陈红汉, 谢玉洪, 等. 琼东南盆地深水区超压演化与油气运移模拟[J]. 中南大学学报:自然科学版), 2013, 44(10): 4187−4201.

    Zhai Puqiang, Chen Honghan, Xie Yuhong, et al. Modelling of evolution of overpressure system and hydrocarbon migration in deepwater area of Qiongdongnan Basin, South China Sea[J]. Journal of Central South University: Science and Technology, 2013, 44(10): 4187−4201.
    [22] 郝诒纯, 陈平富, 万晓樵, 等. 南海北部莺歌海-琼东南盆地晚第三纪层序地层与海平面变化[J]. 现代地质, 2000, 14(3): 237−245. doi: 10.3969/j.issn.1000-8527.2000.03.001

    Hao Yichun, Chen Pingfu, Wan Xiaoqiao, et al. Late Tertiary sequence stratigraphy and sea level changes in Yinggehai-Qiongdongnan Basin[J]. Geoscience, 2000, 14(3): 237−245. doi: 10.3969/j.issn.1000-8527.2000.03.001
    [23] Shao Lei, Cui Yuchi, Qiao Peijun, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 504−516. doi: 10.1016/j.palaeo.2017.07.006
    [24] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156−1166. doi: 10.1126/science.235.4793.1156
    [25] 余克服, 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6): 138−145. doi: 10.3321/j.issn:1005-2321.2009.06.015

    Yu Kefu, Chen Tegu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the Late Holocene[J]. Earth Science Frontiers, 2009, 16(6): 138−145. doi: 10.3321/j.issn:1005-2321.2009.06.015
    [26] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 2005, 437(7055): 125−128. doi: 10.1038/nature03975
    [27] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128−133.
    [28] Jian Zhimin, Cheng Xinrong, Zhao Quanhong, et al. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 952−960. doi: 10.1007/BF02907088
    [29] 黄宝琦, 翦知湣, 赵泉鸿, 等. 晚上新世以来南海北部深部水团演化[J]. 地球科学: 中国地质大学学报, 2005, 30(5): 529−533.

    Huang Baoqi, Jian Zhimin, Zhao Quanhong, et al. Variations in deep-water masses from the Northern South China Sea since the Late Pliocene[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(5): 529−533.
    [30] Siddall M, Hönisch B, Waelbroeck C, et al. Changes in deep Pacific temperature during the mid-Pleistocene transition and Quaternary[J]. Quaternary Science Reviews, 2010, 29(1/2): 170−181.
    [31] Shao Lei, Li Xuejie, Geng Jianhua, et al. Deep water bottom current deposition in the northern South China Sea[J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060−1066. doi: 10.1007/s11430-007-0015-y
    [32] Zahn R, Mix A C. Benthic foraminiferal δ18O in the ocean’s temperature-salinity-density field: constraints on Ice Age thermohaline circulation[J]. Paleoceanography, 1991, 6(1): 1−20. doi: 10.1029/90PA01882
    [33] He Lijuan, Wang Kelin, Xiong Liangping, et al. Heat flow and thermal history of the South China Sea[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 211−220.
    [34] 米立军, 袁玉松, 张功成, 等. 南海北部深水区地热特征及其成因[J]. 石油学报, 2009, 30(1): 27−32. doi: 10.3321/j.issn:0253-2697.2009.01.005

    Mi Lijun, Yuan Yusong, Zhang Gongcheng, et al. Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea[J]. Acta Petrolei Sinica, 2009, 30(1): 27−32. doi: 10.3321/j.issn:0253-2697.2009.01.005
    [35] 宋洋, 赵长煜, 张功成, 等. 南海北部珠江口与琼东南盆地构造–热模拟研究[J]. 地球物理学报, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007

    Song Yang, Zhao Changyu, Zhang Gongcheng, et al. Research on tectono–thermal modeling for Qiongdongnan Basin and Pearl River Mouth Basin in the northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007
    [36] Wang Zhenfeng, Shi Xiaobin, Yang Jun, et al. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2014, 33(12): 107−117. doi: 10.1007/s13131-014-0580-9
    [37] 施小斌, 王振峰, 蒋海燕, 等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报, 2015, 58(3): 939−952. doi: 10.6038/cjg20150320

    Shi Xiaobin, Wang Zhenfeng, Jiang Haiyan, et al. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin[J]. Chinese Journal of Geophysics, 2015, 58(3): 939−952. doi: 10.6038/cjg20150320
    [38] Nissen S S, Hayes D E, Yao Bochu, et al. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22447−22483.
    [39] Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971−1992.
    [40] Tréhu A M, Ruppel C, Holland M, et al. Gas hydrates in marine sediments: lessons from scientific ocean drilling[J]. Oceanography, 2006, 19(4): 124−142. doi: 10.5670/oceanog
    [41] Sloan E D, Koh C A, Sum A K. Gas hydrate stability and sampling: the future as related to the phase diagram[J]. Energies, 2010, 3(12): 1991−2000. doi: 10.3390/en3121991
    [42] Milkov A V, Claypool G E, Lee Y J, et al. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1007−1026. doi: 10.1016/j.gca.2004.08.021
    [43] 苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1): 1−13. doi: 10.3969/j.issn.1000-8527.2005.01.001

    Su Xin, Chen Fang, Yu Xinghe, et al. A pilot study on Miocene through Holocene sediments from the continental slope of the South China Sea in correlation with possible distribution of gas hydrates[J]. Geoscience, 2005, 19(1): 1−13. doi: 10.3969/j.issn.1000-8527.2005.01.001
    [44] Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments[J]. Geochemical Journal, 1998, 32(3): 143−157. doi: 10.2343/geochemj.32.143
    [45] 刘正华, 陈红汉. 琼东南盆地天然气成因类型及其烃源探讨[J]. 石油实验地质, 2011, 33(6): 639−644. doi: 10.3969/j.issn.1001-6112.2011.06.015

    Liu Zhenghua, Chen Honghan. Origin mechanism and source rock for natural gas in Qiongdongnan Basin, South China Sea[J]. Petroleum Geology & Experiment, 2011, 33(6): 639−644. doi: 10.3969/j.issn.1001-6112.2011.06.015
    [46] 陈萍, 方念乔. 天然气体水合物在地质作用过程中变化的探讨[J]. 地球科学: 中国地质大学学报, 2002, 27(4): 441−445.

    Chen Ping, Fang Nianqiao. Study on changes of gas-hydrate under various geological processes[J]. Earth Science: Journal of China University of Geosciences, 2002, 27(4): 441−445.
    [47] 董伟良, 黄保家. 东方1-1气田天然气组成的不均一性与幕式充注[J]. 石油勘探与开发, 1999, 26(2): 15−18. doi: 10.3321/j.issn:1000-0747.1999.02.005

    Dong Weiliang, Huang Baojia. Heterogeneity of natural gases and the episodic charging process: a case study for Dongfang 1-1 gas field, Yinggehai Basin[J]. Petroleum Exploration and Development, 1999, 26(2): 15−18. doi: 10.3321/j.issn:1000-0747.1999.02.005
    [48] Hao Fang, Li Sitian, Sun Yongchuan, et al. Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan basin, South China Sea[J]. AAPG Bulletin, 1998, 82(7): 1372−1384.
    [49] 高媛, 曲希玉, 杨希冰, 等. 琼东南盆地乐东–陵水凹陷中新统储层流体包裹体特征及成藏期研究[J]. 海相油气地质, 2018, 23(1): 83−90. doi: 10.3969/j.issn.1672-9854.2018.01.010

    Gao Yuan, Qu Xiyu, Yang Xibing, et al. Characteristics of fluid inclusions and accumulation period of Miocene reservoir in Ledong–Lingshui sag of Qiongdongnan basin[J]. Marine Origin Petroleum Geology, 2018, 23(1): 83−90. doi: 10.3969/j.issn.1672-9854.2018.01.010
    [50] 贾元琴, 胡沛青, 张铭杰, 等. 琼东南盆地崖城地区流体包裹体特征和油气充注期次分析[J]. 沉积学报, 2012, 30(1): 189−196.

    Jia Yuanqin, Hu Peiqing, Zhang Mingjie, et al. Characteristics of fluid inclusions and their constraints on timing of hydrocarbon filling in the Yacheng area of Qiongdongnan basin, South China[J]. Acta Sedimentologica Sinica, 2012, 30(1): 189−196.
    [51] Sun Qiliang, Wu Shiguo, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146−1156. doi: 10.1016/j.marpetgeo.2011.03.003
  • 加载中
图(7)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  30
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-04
  • 修回日期:  2019-03-11
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回