留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

次重力波对宽刈幅高度计海表面高度观测的影响

张蕾 刘国强 何宜军 WilliamPerrie

张蕾, 刘国强, 何宜军, WilliamPerrie. 次重力波对宽刈幅高度计海表面高度观测的影响[J]. 海洋学报, 2019, 41(6): 103-113. doi: 10.3969/j.issn.0253-4193.2019.06.010
引用本文: 张蕾, 刘国强, 何宜军, WilliamPerrie. 次重力波对宽刈幅高度计海表面高度观测的影响[J]. 海洋学报, 2019, 41(6): 103-113. doi: 10.3969/j.issn.0253-4193.2019.06.010
Zhang Lei, Liu Guoqiang, He Yijun, William Perrie. Impact of infragravity waves on sea surface elevation observed by wide-swath altimeter[J]. Haiyang Xuebao, 2019, 41(6): 103-113. doi: 10.3969/j.issn.0253-4193.2019.06.010
Citation: Zhang Lei, Liu Guoqiang, He Yijun, William Perrie. Impact of infragravity waves on sea surface elevation observed by wide-swath altimeter[J]. Haiyang Xuebao, 2019, 41(6): 103-113. doi: 10.3969/j.issn.0253-4193.2019.06.010

次重力波对宽刈幅高度计海表面高度观测的影响

doi: 10.3969/j.issn.0253-4193.2019.06.010
基金项目: 国家自然科学基金项目(41506028);江苏省青年科学基金(BK20150913);国家重点基础研究发展计划项目(2016YFC1401407);全球变化与海气相互作用专项项目(GASI-IPOVAI-04);南京信息工程大学人才启动基金。

Impact of infragravity waves on sea surface elevation observed by wide-swath altimeter

  • 摘要: 次重力波(Infragravity Wave,IGW)是一种频率较低(0.05~0.005 Hz),波长较长(约10 km)的表面重力波。由IGW引起的海表面高度变化会被宽刈幅干涉高度计SWOT (Surface Water and Ocean Topography,SWOT)卫星观测到,因此在使用SWOT观测的海表面高度来反演中尺度、次中尺度大洋环流时,IGW是一种重要的误差来源。根据数值模型模拟的全球IGW时空分布特征,本文以IGW最为活跃的东北太平洋和欧洲西北陆架附近大西洋为研究海域,估算了上述海域由IGW所引起的海表面高度变化,并将计算结果与SWOT Simulator模拟的轨道噪声(±5 cm)比较,首次定量地估算了IGW在SWOT观测海表面高度时的干扰程度。研究表明,IGW所引起的厘米量级的海表面高度变化在SWOT卫星观测海表面流场时是一种重要的,不可忽略的误差来源。在大西洋欧洲西北陆架海域,冬季IGW对海表面高度的贡献可达到SWOT卫星噪声要求水平的25%;然而,对于大陆架狭窄的美国西岸太平洋而言,由岸线产生的IGW将迅速传入深海海域,在广阔的范围内产生显著的"噪声"影响,在SWOT反演海表面流场时由IGW引起的误差将达到SWOT卫星噪声要求水平的15%。
  • Reniers A J H M, Roelvink J A, Thornton E B. Morphodynamic modeling of an embayed beach under wave group forcing[J]. Journal of Geophysical Research:Oceans, 2004, 109(C1):C01030.
    Aagaard T, Greenwood B. Infragravity wave contribution to surf zone sediment transport-The role of advection[J]. Marine Geology, 2008, 251(1/2):1-14.
    Sheremet A, Staples T, Ardhuin F, et al. Observations of large infragravity wave runup at Banneg Island, France[J]. Geophysical Research Letters, 2014, 41(3):976-982.
    Bromirski P D, Sergienko O V, MacAyeal D R. Transoceanic infragravity waves impacting Antarctic ice shelves[J]. Geophysical Research Letters, 2010, 37(2):L02502.
    Webb S C, Crawford W C. Shallow-water broadband OBS seismology[J]. Bulletin of the Seismological Society of America, 2010, 100(4):1770-1778.
    Livneh D J, Seker I, Djuth F T, et al. Continuous quasiperiodic thermospheric waves over Arecibo[J]. Journal of Geophysical Research:Space Physics, 2007, 112(A7):A07313.
    Luther D S, Chave A D, Filloux J H, et al. Evidence for local and nonlocal barotropic responses to atmospheric forcing during BEMPEX[J]. Geophysical Research Letters, 1990, 17(7):949-952.
    Godin O A, Zabotin N A, Bullett T W. Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean[J]. Earth, Planets and Space, 2015, 67:47.
    Longuet-Higgins M S, Stewart R W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’[J]. Journal of Fluid Mechanics, 1962, 13(4):481-504.
    Herbers T H C, Elgar S, Guza R T. Infragravity-frequency (0.005-0.05 Hz) motions on the shelf. Part Ⅰ:Forced waves[J]. Journal of Physical Oceanography, 1994, 24(5):917-927.
    Herbers T H C, Elgar S, Guza R T, et al. Infragravity-frequency (0.005-0.05 Hz) motions on the shelf. Part Ⅱ:Free waves[J]. Journal of Physical Oceanography, 1995, 25(6):1063-1079.
    Symonds G, Huntley D A, Bowen A J. Two-dimensional surf beat:Long wave generation by a time-varying breakpoint[J]. Journal of Geophysical Research:Oceans, 1982, 87(C1):492-498.
    Munk W, Snodgrass F, Gilbert F. Long waves on the continental shelf:an experiment to separate trapped and leaky modes[J]. Journal of Fluid Mechanics, 1964, 20(4):529-554.
    Huntley D A, Guza R T, Thornton E B. Field observations of surf beat:1. Progressive edge waves[J]. Journal of Geophysical Research:Oceans, 1981, 86(C7):6451-6466.
    Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements[J]. Journal of Physical Oceanography, 2016, 46(3):947-963.
    Webb S C, Zhang Xin, Crawford W. Infragravity waves in the deep ocean[J]. Journal of Geophysical Research:Oceans, 1991, 96(C2):2723-2736.
    Harmon N, Henstock T, Srokosz M, et al. Infragravity wave source regions determined from ambient noise correlation[J]. Geophysical Research Letters, 2012, 39(4):L04604.
    Godin O A, Zabotin N A, Sheehan A F, et al. Interferometry of infragravity waves off New Zealand[J]. Journal of Geophysical Research:Oceans, 2014, 119(2):1103-1122.
    Neale J, Harmon N, Srokosz M. Source regions and reflection of infragravity waves offshore of the U.S.s Pacific Northwest[J]. Journal of Geophysical Research:Oceans, 2015, 120(9):6474-6491.
    Guza R T, Thornton E B. Swash oscillations on a natural beach[J]. Journal of Geophysical Research:Oceans, 1982, 87(C1):483-491.
    Sheremet A, Guza R T, Elgar S, et al. Observations of nearshore infragravity waves:Seaward and shoreward propagating components[J]. Journal of Geophysical Research:Oceans, 2002, 107(C8):3095.
    Rawat A, Ardhuin F, Ballu V, et al. Infragravity waves across the oceans[J]. Geophysical Research Letters, 2014, 41(22):7957-7963.
    Aucan J, Ardhuin F. Infragravity waves in the deep ocean:An upward revision[J]. Geophysical Research Letters, 2013, 40(13):3435-3439.
    Ardhuin F, Rawat A, Aucan J. A numerical model for free infragravity waves:Definition and validation at regional and global scales[J]. Ocean Modelling, 2014, 77:20-32.
    Holthuijsen L H. Waves in Oceanic and Coastal Waters[M]. New York:Cambridge University Press, 2007:48-49.
  • 加载中
计量
  • 文章访问数:  524
  • HTML全文浏览量:  18
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-09
  • 修回日期:  2018-06-08

目录

    /

    返回文章
    返回