留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对微型鞭毛虫摄食细菌的影响

陆家昌 李杰 赖俊翔

陆家昌, 李杰, 赖俊翔. 温度对微型鞭毛虫摄食细菌的影响[J]. 海洋学报, 2019, 41(6): 85-92. doi: 10.3969/j.issn.0253-4193.2019.06.008
引用本文: 陆家昌, 李杰, 赖俊翔. 温度对微型鞭毛虫摄食细菌的影响[J]. 海洋学报, 2019, 41(6): 85-92. doi: 10.3969/j.issn.0253-4193.2019.06.008
Lu Jiachang, Li Jie, Lai Junxiang. The effects of temperature on the bacterivory of nanoflagellates[J]. Haiyang Xuebao, 2019, 41(6): 85-92. doi: 10.3969/j.issn.0253-4193.2019.06.008
Citation: Lu Jiachang, Li Jie, Lai Junxiang. The effects of temperature on the bacterivory of nanoflagellates[J]. Haiyang Xuebao, 2019, 41(6): 85-92. doi: 10.3969/j.issn.0253-4193.2019.06.008

温度对微型鞭毛虫摄食细菌的影响

doi: 10.3969/j.issn.0253-4193.2019.06.008
基金项目: 广西科技重大专项(桂科AA17202020);广西自然科学基金青年基金项目(2016GXNSFBA380188);广西科学院基本科研业务费资助项目(2017YJJ23017)。

The effects of temperature on the bacterivory of nanoflagellates

  • 摘要: 为研究温度对微型鞭毛虫(Nanoflagellates,NF)摄食细菌的影响,于广西近岸海区采集NF自然群落,置于实验室不同温度下(14℃、22℃、28℃)培养9天,观察细菌和NF的丰度变化。并以荧光细菌标记法研究不同温度下异养微型鞭毛虫(Hetertrophic Nanoflagellates,HNF)和含色素微型鞭毛虫(Pigmented Nanoflagellates,PNF)对细菌的摄食率,计算不同类型NF的群落摄食率。此外,研究还比较了不同粒径PNF (<3 μm和3~10 μm)对细菌的摄食。结果表明,不同类型的NF对细菌的摄食率由大到小为:3~10 μm PNF、HNF、小于3 μm PNF。较之PNF,HNF的摄食受温度影响较小。PNF的摄食率在22℃最大。而且,不同大小PNF的摄食对温度的响应有所不同。升温可以提高3~10 μm PNF的摄食率,但会抑制小于3 μm PNF的摄食。而降温抑制3~10 μm PNF的摄食,但降温对小于3 μm PNF摄食的抑制作用比升温小。但无论是3~10 μm PNF还是小于3 μm PNF,升温均会降低其丰度。而由于丰度减小对群落摄食率的影响更大,因此,升温降低PNF的群落摄食率。
  • Billen G, Servais P, Becquevort S. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments:bottom-up or top-down control?[J]. Hydrobiologia, 1990, 207(1):37-42.
    Pedrós-Alió C, Calderón-Paz J I, Gasol J M. Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton[J]. FEMS Microbiology Ecology, 2000, 32(2):157-165.
    Pace M L. Bacterial mortality and the fate of bacterial production[J]. Hydrobiologia, 1988, 159(1):41-49.
    Weinbauer M G, Höfle M G. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake[J]. Applied and Environmental Microbiology, 1998, 64(2):431-438.
    Calbet A, Landry M R, Nunnery S. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific[J]. Aquatic Microbial Ecology, 2001, 23(3):283-292.
    Unrein F, Gasol J M, Not F, et al. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters[J]. The ISME Journal, 2014, 8(1):164-176.
    Tsai A Y, Gong G C, Sanders R W, et al. Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem[J]. Aquatic Microbial Ecology, 2011, 63:9-18.
    Chan Y F, Tsai A Y, Chiang K P, et al. Pigmented nanoflagellates grazing on Synechococcus:seasonal variations and effect of flagellate size in the coastal ecosystem of subtropical Western Pacific[J]. Microbial Ecology, 2009, 58(3):548-557.
    Wilken S, Huisman J, Naus-Wiezer S, et al. Mixotrophic organisms become more heterotrophic with rising temperature[J]. Ecology Letters, 2013, 16(2):225-233.
    Vázquez-Domínguez E, Vaqué D, Gasol J M. Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of the NW Mediterranean[J]. Aquatic Microbial Ecology, 2012, 67(2):107-121.
    黄凌风, 汪文澜, 林施泉, 等. 温度对一种海洋微型异养鞭毛虫生长影响的初步研究[J]. 寄生虫与医学昆虫学报, 2010, 17(1):10-15. Huang Lingfeng, Wang Wenlan, Lin Shiquan, et al. Effect of temperature on the growth of a marine heterotrophic nanoflagellate[J]. Acta Parasitology et Medica Entomologica Sinica, 2010, 17(1):10-15.
    Kamykowski D, Zentara S J. Predicting plant nutrient concentrations from temperature and sigma-t in the upper kilometer of the world ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1986, 33(1):89-105.
    Arenovski A L, Lim E L, Caron D A. Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients[J]. Journal of Plankton Research, 1995, 17(4):801-820.
    Jones R I. Mixotrophy in planktonic protists:an overview[J]. Freshwater Biology, 2000, 45(2):219-226.
    Sherr B F, Sherr E B, Fallon R D. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory[J]. Applied and Environmental Microbiology, 1987, 53(5):958-965.
    陈默, 高光, 朱丽萍, 等. 太湖水体中微型原生动物对细菌的捕食作用[J]. 应用生态学报, 2007, 18(10):2384-2388. Chen Mo, Gao Guang, Zhu Liping, et al. Predation of micro-protozoa on bacteria in Taihu Lake[J]. Chinese Journal of Applied Ecology, 2007, 18(10):2384-2388.
    Menden-Deuer S, Lawrence C, Franzè G. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom[J]. PeerJ, 2018, 6:e5264.
    Marrasé C, Lim E L, Caron D A. Seasonal and daily changes in bacterivory in a coastal plankton community[J]. Marine Ecology Progress, 1992, 82(3):281-289.
    Shiah F K, Ducklow H W. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA[J]. Marine Ecology Progress, 1994, 104(3):297-308.
    Choi D H, Park J S, Hwang C Y, et al. Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters[J]. Marine Ecology Progress, 2002, 229:1-10.
    Vaqué D, Gasol J M, Marrasé C. Grazing rates on bacteria:the significance of methodology and ecological factors[J]. Marine Ecology Progress, 1994, 109:263-274.
    Fenchel T. Ecology of heterotrophic microflagellates. Ⅱ. bioenergetics and growth[J]. Marine Ecology, 1982, 8:225-231.
    Heinze A W, Truesdale C L, DeVaul S B, et al. Role of temperature in growth, feeding, and vertical distribution of the mixotrophic chrysophyte Dinobryon[J]. Aquatic Microbial Ecology, 2013, 71(2):155-163.
    潘科. 海洋异养鞭毛虫摄食与生长的实验生态学研究[D]. 厦门:厦门大学, 2006. Pan Ke. Experimental ecological study on feeding and growth of marine heterotrophic flagellates[D]. Xiamen:Xiamen University, 2006.
  • 加载中
计量
  • 文章访问数:  465
  • HTML全文浏览量:  11
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 修回日期:  2018-06-19

目录

    /

    返回文章
    返回