留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底承压含水层排泄电阻率法探测效果模拟与分析

李宁 郭秀军 马强伟 张宇丰

李宁, 郭秀军, 马强伟, 张宇丰. 海底承压含水层排泄电阻率法探测效果模拟与分析[J]. 海洋学报, 2019, 41(5): 128-137. doi: 10.3969/j.issn.0253-4193.2019.05.012
引用本文: 李宁, 郭秀军, 马强伟, 张宇丰. 海底承压含水层排泄电阻率法探测效果模拟与分析[J]. 海洋学报, 2019, 41(5): 128-137. doi: 10.3969/j.issn.0253-4193.2019.05.012
Li Ning, Guo Xiujun, Ma Qiangwei, Zhang Yufeng. The research of electrical resistivity system's application effect simulation in coastal submarine confined groundwater discharge[J]. Haiyang Xuebao, 2019, 41(5): 128-137. doi: 10.3969/j.issn.0253-4193.2019.05.012
Citation: Li Ning, Guo Xiujun, Ma Qiangwei, Zhang Yufeng. The research of electrical resistivity system's application effect simulation in coastal submarine confined groundwater discharge[J]. Haiyang Xuebao, 2019, 41(5): 128-137. doi: 10.3969/j.issn.0253-4193.2019.05.012

海底承压含水层排泄电阻率法探测效果模拟与分析

doi: 10.3969/j.issn.0253-4193.2019.05.012
基金项目: 国家自然科学基金(41772307);国家重点研发项目(2017YFC0307701);国家自然科学基金重大科研仪器研制项目(41427803)。

The research of electrical resistivity system's application effect simulation in coastal submarine confined groundwater discharge

  • 摘要: 海底承压含水层排泄是海底地下水排泄的一种主要形式。由于这一过程发生在海水层下部,探测难度较大。为探讨海洋多电极电阻率法对该过程的探测能力,根据典型海底承压含水层地质模型构建不同排泄阶段地电模型,模拟海面和海床面两种探测情形分别进行多电极电阻率法理论探测结果计算和物理模拟,并对所得电阻率剖面进行对比分析。研究结果表明,水面多电极电阻率探测剖面能够清晰刻画出排泄入海的淡水体在海水中迁移、混合过程,但剖面异常特征和分辨率受探测装置形式、电极极距、海水深度影响;海床面探测则对沉积层中咸淡水交换过程反映能力更强,沉积层中的锲形海水侵入体可得到良好反映。
  • Hanshaw B B, Back W, Deike R G. A geochemical hypothesis for dolomitization by ground water[J]. Economic Geology, 1971, 66(5):710-724.
    Badiozamani K. The Dorag dolomitization model-application to the middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4):965-984.
    Johannes R E. The ecological significance of the submarine discharge of groundwater[J]. Marine Ecology Progress Series, 1980, 3:365-373.
    Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575):612-614.
    Lambert M J, Burnett W C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J]. Biogeochemistry, 2003, 66(1/2):55-73.
    Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2):3-33.
    Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2:59-88.
    Li Hailong, Jiao J. Quantifying tidal contribution to submarine groundwater discharges:a review[J]. Chinese Science Bulletin, 2013, 58(25):3053-3059.
    Santos I R, Eyre B D, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments:a review[J]. Estuarine, Coastal and Shelf Science, 2012, 98:1-15.
    Lee D R. A device for measuring seepage flux in lakes and estuaries[J]. Limnology and Oceanography, 1977, 22(1):140-147.
    李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6):636-646. Li Hailong, Wang Xuejing. Submarine groundwater discharge:a review[J]. Advances in Earth Science, 2015, 30(6):636-646.
    Paulsen R J, Smith C F, O'Rourke D, et al. Development and evaluation of an ultrasonic ground water seepage meter[J]. Groundwater, 2001, 39(6):904-911.
    Moore W S, Sarmiento J L, Key R M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1(5):309-311.
    郭占荣, 黄磊, 刘花台, 等. 镭同位素示踪隆教湾的海底地下水排泄[J]. 地球学报, 2008, 29(5):647-652. Guo Zhanrong, Huang Lei, Liu Huatai, et al. The estimation of submarine inputs of groundwater to a coastal bay using radium isotopes[J]. Acta Geoscientica Sinica, 2008, 29(5):647-652.
    Henderson R D, Day-Lewis F D, Lane J W Jr, et al. Characterizing submarine ground-water discharge using fiber-optic distributed temperature sensing and marine electrical resistivity[C]//Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems 2008. Denver, Colorado:Society of Exploration Geophysicists, 2008:1427.
    Henderson R D, Day-Lewis F D, Abarca E, et al. Marine electrical resistivity imaging of submarine groundwater discharge:sensitivity analysis and application in Waquoit Bay, Massachusetts, USA[J]. Hydrogeology Journal, 2010, 18(1):173-185.
    Dimova N T, Swarzenski P W, Dulaiova H, et al. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems[J]. Journal of Geophysical Research:Oceans, 2012, 117(C2):C02012.
    Johnson C D, Swarzenski P W, Richardson C M, et al. Ground-truthing electrical resistivity methods in support of submarine groundwater discharge studies:examples from Hawaii, Washington, and California[J]. Journal of Environmental & Engineering Geophysics, 2015, 20(1):81-87.
    任广欣, 郭秀军, 蒋甫伟, 等. 走航式水下多道电阻率探测系统研制与应用[J]. 地球物理学进展, 2015, 30(3):1430-1436. Ren Guangxin, Guo Xiujun, Jiang Fuwei, et al. A navigated underwater DC resistivity survey system developed and used in detecting[J]. Progress in Geophysics, 2015, 30(3):1430-1436.
    Manheim F T, Krantz D E, Bratton J F. Studying ground water under Delmarva coastal bays using electrical resistivity[J]. Ground Water, 2004, 42(7):1052-1068.
  • 加载中
计量
  • 文章访问数:  460
  • HTML全文浏览量:  21
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26

目录

    /

    返回文章
    返回