留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含砂量变化影响海底沉积物压缩波速度的分析研究

李赶先 龙建军 马雯波

李赶先, 龙建军, 马雯波. 含砂量变化影响海底沉积物压缩波速度的分析研究[J]. 海洋学报, 2019, 41(5): 70-78. doi: 10.3969/j.issn.0253-4193.2019.05.007
引用本文: 李赶先, 龙建军, 马雯波. 含砂量变化影响海底沉积物压缩波速度的分析研究[J]. 海洋学报, 2019, 41(5): 70-78. doi: 10.3969/j.issn.0253-4193.2019.05.007
Li Ganxian, Long Jianjun, Ma Wenbo. Influence of sand concentration variation on the compressed waves velocity in the seabed sediments[J]. Haiyang Xuebao, 2019, 41(5): 70-78. doi: 10.3969/j.issn.0253-4193.2019.05.007
Citation: Li Ganxian, Long Jianjun, Ma Wenbo. Influence of sand concentration variation on the compressed waves velocity in the seabed sediments[J]. Haiyang Xuebao, 2019, 41(5): 70-78. doi: 10.3969/j.issn.0253-4193.2019.05.007

含砂量变化影响海底沉积物压缩波速度的分析研究

doi: 10.3969/j.issn.0253-4193.2019.05.007
基金项目: 国家自然科学基金(41476028);湖南省重点研发计划项目(2017WK2032);声场声信息国家重点实验室开放课题研究基金(SKLA201606)。

Influence of sand concentration variation on the compressed waves velocity in the seabed sediments

  • 摘要: 本文通过对南海海底沉积物样品的声学物理参数和沉积粒度特征统计分析,发现了高、低含砂量沉积物的声学物理特征存在明显差异,建立了海底沉积物的含砂量与压缩波速度、孔隙度、含水量和密度等经验公式,分析了含砂量变化与沉积物的体积压缩模量和密度变化的关系,从声速理论基础上阐明了含砂量变化引起沉积物压缩波速度变化的内在原因是含砂量变化引起了体积压缩模量和密度发生了变化,说明了含砂量增大引起沉积物压缩波速度增大的内在原因是含砂量增大引起了体积压缩模量变化量大于密度变化量,从而在数据统计和理论分析结合基础上,论证了含砂量是影响海底沉积物压缩波速度的重要因素之一。这一研究对声学方法反演海底沉积物粒度参数和沉积物类型、地声参数转换模型的建立,以及对水声反演海底和海底资源勘探等方面都具有重要理论意义和应用价值。
  • 中华人民共和国国家质量监督检疫总局. GB/T12763.8-2007, 海洋调查规范 第8部分:海洋地质地球物理调查[S]. 北京:中国标准出版社, 2007. General Administration of Quality Supervision and Quarantine of the People's Republic of China. GB/T12763.8-2007, Specifications for oceanographic survey-Part 8:Marine geology and geophysics survey[S]. Beijing:China Standards Press, 2007.
    Yang Kunde, Xu Liya, Yang Qiulong, et al. Two-step inversion of geoacoustic parameters with bottom reverberation and transmission loss in the deep ocean[J]. Acoustics Australia, 2018, 46(1):131-142.
    Zou Dapeng, Luo Wei, Zheng Hongbo. First arrival cycle-based calculation methods of in situ sound speed and attenuation in sediments[J]. Marine Georesources & Geotechnology, 2017, 35(1):98-103.
    Ballard M S, Lee K M. The acoustics of marine sediments[J]. Acoustics Today, 2017, 13(3):11-18.
    Lee K M, Ballard M S, Venegas G R, et al. Preliminary characterization of surficial sediment acoustic properties and infauna in the New England Mud Patch[J]. The Journal of the Acoustical Society of America, 2016, 139(4):2111.
    Robb G B N, Best A I, Dix J K, et al. The frequency dependence of compressional wave velocity and attenuation coefficient of intertidal marine sediments[J]. The Journal of the Acoustical Society of America, 2006, 120(5):2526-2537.
    Zhou Di, Chen Hanzong, Luo Youlang. The classification of mordern sediments and sedimentary environments in northern south China sea by robust logratiomethods[C]//Proceedings of the First International Conference on Asia Marine Geology. Beijing:China Ocean Press, 1990:323-333.
    罗又郎, 冯伟文, 林怀兆. 南海表层沉积类型与沉积作用若干特征[J]. 热带海洋, 1994,13(1):47-54. Luo Youlang, Feng Weiwen, Lin Huaizhao. Bottom sediment types and depositional characteristics of sediments of the South China Sea[J]. Tropic Oceanology, 1994, 13(1):47-54.
    范时清, 罗又郎, 郭忠信, 等. 南海海底沉积分带性[C]//南海海洋科学集刊, 第8集. 北京:科学出版社, 1987:55-60. Fan Shiqing, Luo Youlang, Guo Zhongxin, et al. Bottom sediment zonation of the South China Sea[C]//Nanhai Studia Marine Sinica, No. 8. Beijing:Science Press, 1987:55-60.
    Anderson R S. Statistical correlation of physical properties and sound velocity in sediments[M]//Hampton L. Physics of Sound in Marine Sediment. Boston, MA:Springer, 1974:481-518.
    Hamiltin E L, Bachman R T. Sound velocity and related properties of marine sediments[J]. The Journal of the Acoustical Society of America, 1982, 72(6):1891-1904.
    梁元博, 卢博. 海底沉积物力学性质影响声速的物理机制[J]. 海洋学报, 1985, 7(1):111-119. Liang Yuanbo, Lu Bo. Physical mechanism for the seafloor sediment mechanical property affecting sound velocities[J]. Haiyang Xuebao, 1985, 7(1):111-119.
    Chen Minpen, Shidh Y T, Chyan J M. Acoustic and physical property of surface sediments in Northern Taiwan Strait[J]. Acta Oceanographica Taiwanica, 1988, 21:92-118.
    钱正明. 台湾东南外海海底沉积物物理、土力学和声学特性研究[D]. 台北:台湾大学, 1989. Qian Zhengming. Physical, geotechnical and acoustic studies of the sea bottom sediments off South-Eastern Taiwan[D]. Taipei:Taiwan University, 1989.
    Fu S S, Wilkens R H. Acoustic lance:New in situ seafloor velocity profiles[J]. The Journal of the Acoustical Society of America, 1996, 99(1):231-242.
    邹大鹏, 吴百海, 卢博. 海底沉积物声速经验方程的分析与研究[J]. 海洋学报, 2007, 29(4):43-50. Zou Dapeng, Wu Baihai, Lu Bo. Analysis and study on the sound velocity empirical equations of seafloor sediments[J]. Haiyang Xuebao, 2007, 29(4):43-50.
    卢良鑫,雷雄,刘学伟. 中国南海北部陆坡孔隙度的求取[J]. 地球物理学报, 2013, 56(2):601-607. Lu Liangxin, Lei Xiong, Liu Xuewei. Prediction of porosity in the north margin of the South China Sea[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(2):601-607.
    Long Jianjun, Zhou Huajian, Li Ganxian, et al. Relationship between sound velocity and physical mechanical properties of seafloor sediments in controlled three axis stress-strain[C]//2016 IEEE/OES China Ocean Acoustics (COA). Harbin, China:IEEE, doi: 10.1109/COA.2016.7535668.
    Pierce A D, Siegmann W L, Brown E. Suspension theory for the effect of silt particles on attenuation of compressional waves in marine mud sediments[J]. Proceedings of Meetings on Acoustics, 2016, 29(1):005003.
    龙建军, 李赶先. 海底沉积物声速与物理性质的理论关系[J]. 声学学报, 2015, 40(3):462-468. Long Jianjun, Li Ganxian. Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments[J]. Acta Acustica, 2015, 40(3):462-468.
    Ballard M S, Lee K M, Muir T G. Laboratory P-and S-wave measurements of a reconstituted muddy sediment with comparison to card-house theory[J]. The Journal of the Acoustical Society of America, 2014, 136(6):2941-2946.
    Lee K M, Ballard M S, Venegas G R, et al. Preliminary characterization of surficial sediment acoustic properties and infauna in the New England mud patch[J]. The Journal of the Acoustical Society of America, 2016, 139(4):2111.
    Ballard M S, Costley R D, Sagers1 J D, et al. A comparison between directly measured and inferred wave speeds from an acoustic propagation experiment in Currituck Sound[J]. The Journal of the Acoustical Society of America, 2018, 143(1):237-247.
    汪德昭, 尚尔昌. 水声学[M]. 北京:科学出版社, l981:32-46. Wang Dezhao, Shang Erchang. Underwater Acoustics[M]. Beijing:Chinese Science Press, 1981:32-46.
    卢博, 黄韶健, 李赶先, 等. 在不同沉积物类型中的声速测量实验研究[J]. 海洋技术, 2004, 23(1):66-70. Lu Bo, Huang Shaojian, Li Ganxian, et al. Experiment research on sound velocity measurement in different types of sediments[J]. Ocean Technology, 2004, 23(1):66-70.
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2):168-178.
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2):179-191.
    Zhu Zuyang, Wang Dong, Zhou Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-stoll model[J]. Chinese Journal of Geophysics, 2012, 55(1):180-188.
    刘昭蜀, 赵焕庭, 范时清, 等. 南海地质[M]. 北京:科学出版社, 2002:322-323. Liu Zhaoshu, Zhao Haunting, Fan Shiqing, et al. Geology of the South China Sea[M]. Beijing:Science Publishing House, 2002:322-323.
    苏广庆, 范时清, 陈绍谋, 等. 南海中北部沉积图集[M]. 广州:广东科技出版社, 1989:46-47. Su Guangqing, Fan Shiqing, Chen Shaomou, et al. Sedimentary Atlas of the North-central South China Sea[M]. Guangzhou:Guangdong Science and Technology Publishing House, 1989:46-47.
    Hamilton E L. Prediction of deep-sea sediment properties:state-of-the-art[M]//Inderbitzen A L. Deep-Sea Sediments. Boston, MA:Springer, 1974:1-43.
  • 加载中
计量
  • 文章访问数:  614
  • HTML全文浏览量:  24
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30

目录

    /

    返回文章
    返回