留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风场对SWAN模式在台湾海峡后报结果的影响

滕陈轲敏 岳显昌 吴雄斌 王少华 黄奇华 张兰

滕陈轲敏, 岳显昌, 吴雄斌, 王少华, 黄奇华, 张兰. 风场对SWAN模式在台湾海峡后报结果的影响[J]. 海洋学报, 2019, 41(5): 59-69. doi: 10.3969/j.issn.0253-4193.2019.05.006
引用本文: 滕陈轲敏, 岳显昌, 吴雄斌, 王少华, 黄奇华, 张兰. 风场对SWAN模式在台湾海峡后报结果的影响[J]. 海洋学报, 2019, 41(5): 59-69. doi: 10.3969/j.issn.0253-4193.2019.05.006
Teng Chenkemin, Yue Xianchang, Wu Xiongbin, Wang Shaohua, Huang Qihua, Zhang Lan. Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(5): 59-69. doi: 10.3969/j.issn.0253-4193.2019.05.006
Citation: Teng Chenkemin, Yue Xianchang, Wu Xiongbin, Wang Shaohua, Huang Qihua, Zhang Lan. Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(5): 59-69. doi: 10.3969/j.issn.0253-4193.2019.05.006

风场对SWAN模式在台湾海峡后报结果的影响

doi: 10.3969/j.issn.0253-4193.2019.05.006
基金项目: 国家自然科学基金(41474128,61771352);"十二五"国家高技术研究发展计划(2012AA091701,2012AA091702)。

Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait

  • 摘要: 本文利用SWAN模式模拟分析了CCMP和DASCAT两种常用风场数据在台湾海峡海面的浪场结果。东北季风期3个月的浪场模拟结果与浮标实测波高时序数据相比,偏差均值不大于0.33 m,偏差均方根不大于0.59 m。一般在浮标波高大于3.5 m和小于1.0 m时,偏差偏大。6 h分辨率的风场数据相较于24 h分辨率风场数据对应的模拟结果更接近于浮标实测结果。在6 h和24 h分辨率的CCMP风场数据和24 h分辨率的DASCAT风场数据的模拟结果中,两两结果间的空间相关系数均不低于0.90,偏差均值不大于0.32 m,偏差均方根不大于0.4 m。
  • 齐义泉, 朱伯承, 施平, 等. WWATCH模式模拟南海海浪场的结果分析[J]. 海洋学报, 2003, 25(4):1-9. Qi Yiquan, Zhu Bocheng, Shi Ping, et al. Analysis of significant wave heights from WWATCH and TOPEX/poseidon altimetry[J]. Haiyang Xuebao, 2003, 25(4):1-9.
    卢雄赳, 付微, 吴雄斌, 等. 改进的非相参导航雷达探测有效波高算法[J]. 科学技术与工程, 2014, 14(35):72-75. Lu Xiongjiu, Fu Wei, Wu Xiongbin, et al. Improved algorithm of detecting significant wave height based on the incoherent navigation radar[J]. Science Technology and Engineering, 2014, 14(35):72-75.
    Berkhoff J C W. Computation of combined refraction-diffraction[C]//Proceeding of 13th Coastal Engineering Conference ASCE. 1972:796-814.
    Nwogu O. Alternative form of boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(6):618-638.
    Xu Fumin, Yan Yixin, Zhang Changkuan, et al. Wave numerical model for shallow water[J]. China Ocean Engineering, 2000, 14(2):193-202.
    Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666.
    Rogers W E, Kaihatu J M, Petit H A H, et al. Diffusion reduction in an arbitrary scale third generation wind wave model[J]. Ocean Engineering, 2002, 29(11):1357-1390.
    Umesh P A, Swain J. Inter-comparisons of SWAN hindcasts using boundary conditions from WAM and WWⅢ for northwest and northeast coasts of India[J]. Ocean Engineering, 2018, 156:523-549.
    梁书秀, 孙昭晨, 尹洪强, 等. 基于SWAN模式的南海台风浪推算的影响因素分析[J]. 海洋科学进展, 2015, 33(1):19-30. Liang Shuxiu, Sun Zhaochen, Yin Hongqiang, et al. Influence factors of typhoon wave forecast in the South China Sea by SWAN model[J]. Advances in Marine Science, 2015, 33(1):19-30.
    张鹏, 陈晓玲, 陆建忠, 等. 基于CCMP卫星遥感海面风场数据的渤海风浪模拟研究[J]. 海洋通报, 2011, 30(3):266-271. Zhang Peng, Chen Xiaoling, Lu Jianzhong, et al. Research on wave simulation of Bohai Sea based on the CCMP remotely sensed sea winds[J]. Marine Science Bulletin, 2011, 30(3):266-271.
    Mao Miaohua, Van Der Westhuysen A J, Xia Meng, et al. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN[J]. Journal of Geophysical Research:Oceans, 2016, 121(6):3836-3865.
    Huang Yong, Weisberg R H, Zheng Lianyuan, et al. Gulf of Mexico hurricane wave simulations using SWAN:bulk formula-based drag coefficient sensitivity for Hurricane Ike[J]. Journal of Geophysical Research:Oceans, 2013, 118(8):3916-3938.
    旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5):44-53. Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. Haiyang Xuebao, 2015, 37(5):44-53.
    陈剑桥. 2008年冬季台湾海峡及其邻近海域QuikSCAT卫星遥感风场的检验及应用分析[J]. 台湾海峡, 2011, 30(2):158-164. Chen Jianqiao. Validation of QuikSCAT data and their application in the analysis of wind characteristics of Taiwan Strait and its adjacent waters in winter 2008[J]. Journal of Oceanography in Taiwan Strait, 2011, 30(2):158-164.
    陈德文, 李雪丁. 台湾海峡及邻近海域冷空气过程风-浪关系的观测分析[J]. 海洋预报, 2018, 35(2):44-52. Chen Dewen, Li Xueding. Analysis of relationship between wind and wave during the period of cold air in Taiwan Strait and its adjacent waters based on observed data[J]. Marine Forecasts, 2018, 35(2):44-52.
    袁凯瑞, 商少平, 谢燕双, 等. 台湾海峡台风浪的数值模拟[J]. 厦门大学学报:自然科学版, 2014, 53(3):413-417. Yuan Kairui, Shang Shaoping, Xie Yanshuang, et al. The simulation of typhoon waves in Taiwan Strait[J]. Journal of Xiamen University:Natural Science, 2014, 53(3):413-417.
    赵昊辰, 尹宝树, 冯兴如, 等. 台湾附近海域超强台风南玛都期间风暴潮对海浪影响的数值研究[J]. 海洋科学, 2015, 39(3):127-134. Zhao Haochen, Yin Baoshu, Fen Xingru, et al. Numerical study of influence of surge and wave interaction on waves in waters surrounding Taiwan[J]. Marine Sciences, 2015, 39(3):127-134.
    Atlas R, Hoffman R N, Ardizzone J, et al. Development of a new cross-calibrated, multi-platform (CCMP) ocean surface wind product[C]//AMS 13th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS). 2009.
    Bentamy A, Fillon D C. Gridded surface wind fields from Metop/ASCAT measurements[J]. International Journal of Remote Sensing, 2012, 33(6):1729-1754.
    Verspeek J, Stoffelen A, Portabella M, et al. Validation and calibration of ASCAT using CMOD5.n[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(1):386-395.
    应王敏, 郑桥, 朱陈陈, 等. 基于SWAN模式的"灿鸿"台风浪数值模拟[J]. 海洋科学, 2017, 41(4):108-117. Ying Wangmin, Zheng Qiao, Zhu Chenchen, et al. Numerical simulation of "CHAN-HOM" typhoon waves using SWAN mode[J]. Marine Sciences, 2017, 41(4):108-117.
  • 加载中
计量
  • 文章访问数:  651
  • HTML全文浏览量:  18
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-13

目录

    /

    返回文章
    返回