留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据挖掘的GF-1遥感影像绿潮自适应阈值分区智能检测方法研究

王蕊 王常颖 李劲华

王蕊, 王常颖, 李劲华. 基于数据挖掘的GF-1遥感影像绿潮自适应阈值分区智能检测方法研究[J]. 海洋学报, 2019, 41(4): 131-144. doi: 10.3969/j.issn.0253-4193.2019.04.012
引用本文: 王蕊, 王常颖, 李劲华. 基于数据挖掘的GF-1遥感影像绿潮自适应阈值分区智能检测方法研究[J]. 海洋学报, 2019, 41(4): 131-144. doi: 10.3969/j.issn.0253-4193.2019.04.012
Wang Rui, Wang Changying, Li Jinhua. An intelligent divisional green tide detection of adaptive threshold for GF-1 image based on data mining[J]. Haiyang Xuebao, 2019, 41(4): 131-144. doi: 10.3969/j.issn.0253-4193.2019.04.012
Citation: Wang Rui, Wang Changying, Li Jinhua. An intelligent divisional green tide detection of adaptive threshold for GF-1 image based on data mining[J]. Haiyang Xuebao, 2019, 41(4): 131-144. doi: 10.3969/j.issn.0253-4193.2019.04.012

基于数据挖掘的GF-1遥感影像绿潮自适应阈值分区智能检测方法研究

doi: 10.3969/j.issn.0253-4193.2019.04.012
基金项目: 国家自然科学青年基金(41506198);国家自然科学面上基金(41476101);全国统计科学研究项目(2017LY14)。

An intelligent divisional green tide detection of adaptive threshold for GF-1 image based on data mining

  • 摘要: 由于受到云雾的影响,可见光影像能够高效用于绿潮检测的数据源较为有限,特别是云覆盖较为严重的可见光影像,基本无法用于检测绿潮。即使影像数据是在薄云、薄雾、无云覆盖的情况下获取的,由于其光谱反射值存在较大差异,依然很难采用同一阈值进行绿潮检测。基于此,为了提高可见光影像的利用率,实现不同云覆盖情况下,绿潮的高精度自适应阈值的自动检测,本文以GF-1影像为数据源,首先采用K-means聚类和C4.5决策树方法实现影像云覆盖情况的自动识别;其次,选取大量不同云覆盖情况下子图像样本(每个子图像样本中均包含绿潮和海水两类),分析得出不同云覆盖情况下绿潮和海水的区分阈值y与影像光谱差x=bandnir-bandred之间所具有的线性关系;然后,利用分析得出的线性关系提出一种适用于GF-1影像的绿潮分区自适应阈值自动检测方法。最后,为验证提出方法的有效性,分别采用NDVI方法、EVI方法和本文提出的自适应阈值自动检测方法进行绿潮提取实验。实验结果表明,对于GF-1卫星遥感数据,本文提出的绿潮自适应阈值分区自动检测方法明显优于传统的NDVI和EVI检测方法,不仅提高了绿潮的监测精度,而且实现了绿潮提取的全自动化。
  • 陈群芳, 何培民, 冯子慧, 等. 漂浮绿潮藻浒苔孢子/配子的繁殖过程[J]. 中国水产科学, 2011, 18(5):1069-1076. Chen Qunfang, He Peimin, Feng Zihui, et al. Reproduction of spores/gametes of floating green tide algae Ulva prolifera[J]. Journal of Fishery Sciences of China, 2011, 18(5):1069-1076.
    Miao Xiaoxiang, Xiao Jie, Pang Min, et al. Effect of the large-scale green tide on the species succession of green macroalgal micro-propagules in the coastal waters of Qingdao, China[J]. Marine Pollution Bulletin, 2018, 126:549-556.
    张永梅, 潘振宽, 曹丛华, 等. 基于变分水平集方法的浒苔绿潮面积信息提取[J]. 海洋学报, 2017, 39(9):121-132. Zhang Yongmei, Pan Zhenkuan, Cao Conghua, et al. Information extraction of enteromorpha green tide area based on variational level set method[J]. Haiyang Xuebao, 2017, 39(9):121-132.
    张海龙, 孙德勇, 李俊生, 等. 基于GF1-WFV和HJ-CCD数据的我国近海绿潮遥感监测算法研究[J]. 光学学报, 2016, 36(6):601004. Zhang Hailong, Sun Deyong, Li Junsheng, et al. Remote sensing algorithm for detecting green tide in China coastal waters based on GF1-WFV and HJ-CCD data[J]. Acta Optica Sinica, 2016, 36(6):601004.
    王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2):1-13. Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2):1-13.
    迟丽宁, 邵峰晶, 王常颖, 等. 基于关联规则的MODIS影像绿潮检测[J]. 青岛大学学报(自然科学版), 2012, 25(2):58-61. Chi Lining, Shao Fengjing, Wang Changying, et al. MODIS images based on association rules green tide monitoring[J]. Journal of Qingdao University (Natural Science Edition), 2012, 25(2):58-61.
    Hu Chuanmin. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
    Keesing J K, Liu Dongyan, Fearns P, Garcia R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007-2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China[J]. Marine Pollution Bulletin, 2011, 62:1169-1182.
    Son Y B, Min J E, Ryu J H. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data[J]. Ocean Science Journal, 2012, 47(3):359-375.
    Zhang Jianheng, Huo Yuanzi, Zhang Zhenglong, et al. Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea[J]. Marine Environmental Research, 2013, 92:35-42.
    Xing Qianguo, Tosi L, Braga F, et al. Interpreting the progressive eutrophication behind the world's largest macroalgal blooms with water quality and ocean color data[J]. Natural Hazards, 2015, 78(1):7-21.
    杨静, 张思, 刘桂梅. 基于卫星遥感监测的2011-2016年黄海绿潮变化特征分析[J]. 海洋预报, 2017, 34(3):56-61. Yang Jing, Zhang Si, Liu Guimei. Variability analysis of the Green Tide based on satellite remote sensing monitoring data from 2011 to 2016 in the Yellow Sea[J]. Marine Forecasts, 2017, 34(3):56-61.
    周雪珺, 杨晓非, 姚行中. 遥感图像的云分类和云检测技术研究[J]. 图学学报,2014, 35(5):768-773. Zhou Xuejun, Yang Xiaofei, Yao Xingzhong. The study of cloud classification and detection in remote sensing image[J]. Journal of Graphics, 2014, 35(5):768-773.
    丘仲锋, 崔廷伟, 何宜军. 基于水体光谱特性的赤潮分布信息MODIS遥感提取[J]. 光谱学与光谱分析, 2011, 31(8):2233-2237. Qiu Zhongfeng, Cui Tingwei, He Yijun. Retrieve of red tide distributions from MODIS data based on the characteristics of water spectrum[J]. Spectroscopy and Spectral Analysis, 2011, 31(8):2233-2237.
    肖艳芳, 张杰, 崔廷伟, 等. 海面漂浮绿潮生物量光谱特征及估算模型[J]. 光学学报, 2017, 37(4):430001. Xiao Yanfang, Zhang Jie, Cui Tingwei, et al. Spectral characteristics and estimation models of floating green tide biomass on sea surface[J]. Acta Optica Sinica, 2017, 37(4):430001.
    杨旭. 遥感影像的自适应阈值法水陆分割研究[J]. 科技资讯, 2013(5):42-43. Yang Xu. Research on water-land segmentation of remote sensing image based on adaptive threshold method[J]. Science and Technology Information, 2013(5):42-43.
    米雪婷, 孙林, 韦晶,等. 基于多时相遥感数据的云阴影检测算法[J]. 山东科技大学学报(自然科学版), 2016, 35(2):64-72. Mi Xueting, Sun Lin, Wei Jing, et al. Cloud shadow detection algorithm based on multi-temporal remote sensing data[J]. Journal of Shandong University of Science and Technology (Natural Science), 2016, 35(2):64-72.
    李炳燮, 马张宝, 齐清文,等. Landsat TM遥感影像中厚云和阴影去除[J]. 遥感学报, 2010, 14(3):534-545. Ri Pyongsop, Ma Zhangbao, Qi Qingwen, et al. Cloud and shadow removal from Landsat TM data[J]. Journal of Remote Sensing. 14(3):534-545.
    慕娟,杜超本,易洲. 遥感图像的NSCT自适应阈值去噪方法[J].无线电工程,2012,42(11):23-25. Mu Juan, Du Chaoben, Yi Zhou. Adaptive threshold for remote sensing image denoising based on wavelet and NSCT[J]. Radio Engineering, 2012,42(11):23-25.
    Wang Changying, Chu Jialan, Tan Meng, et al. An automatic detection of green tide using multi-windows with their adaptive threshold from Landsat TM/ETM plus image[J]. Acta Oceanologica Sinica, 2017, 36(11):106-114.
  • 加载中
计量
  • 文章访问数:  656
  • HTML全文浏览量:  36
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 修回日期:  2018-09-19

目录

    /

    返回文章
    返回