留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钦州湾河流沉积物中镭的解吸行为

罗浩 李林蔚 王锦龙 钟强强 杜金洲

罗浩, 李林蔚, 王锦龙, 钟强强, 杜金洲. 钦州湾河流沉积物中镭的解吸行为[J]. 海洋学报, 2019, 41(4): 27-41. doi: 10.3969/j.issn.0253-4193.2019.04.003
引用本文: 罗浩, 李林蔚, 王锦龙, 钟强强, 杜金洲. 钦州湾河流沉积物中镭的解吸行为[J]. 海洋学报, 2019, 41(4): 27-41. doi: 10.3969/j.issn.0253-4193.2019.04.003
Luo Hao, Li Linwei, Wang Jinlong, Zhong Qiangqiang, Du Jinzhou. The desorption of radium isotopes in river sediments in Qinzhou Bay[J]. Haiyang Xuebao, 2019, 41(4): 27-41. doi: 10.3969/j.issn.0253-4193.2019.04.003
Citation: Luo Hao, Li Linwei, Wang Jinlong, Zhong Qiangqiang, Du Jinzhou. The desorption of radium isotopes in river sediments in Qinzhou Bay[J]. Haiyang Xuebao, 2019, 41(4): 27-41. doi: 10.3969/j.issn.0253-4193.2019.04.003

钦州湾河流沉积物中镭的解吸行为

doi: 10.3969/j.issn.0253-4193.2019.04.003
基金项目: 国家自然科学面上基金(41576083)。

The desorption of radium isotopes in river sediments in Qinzhou Bay

  • 摘要: 放射性镭同位素在海底地下水排放(SGD)等海洋物质变化过程的研究中具有优良的示踪作用,估算SGD通量时需要计算河流悬浮颗粒物的解吸通量。因此,对河流沉积物/悬浮颗粒物中镭同位素解吸行为的研究不可或缺,而目前对于粒度较小范围内镭同位素的解吸特征及其机理的研究依然不足。本文选用钦州湾河流沉积物,通过室内实验探究粒度和盐度对沉积物中镭同位素解吸行为的影响。结果表明,在沉积物平均粒径0.9~136.0 μm范围内,随着粒径增大,沉积物中镭同位素在海水(盐度为33.9)中解吸活度逐渐减小,且变化趋势也逐渐变缓,平均粒径大于43.7 μm后,解吸量几乎不变;在海水盐度4.9~33.9范围内,随着盐度增大,沉积物中镭同位素解吸活度逐渐增大,盐度大于24.9后,解吸量趋于不变。本文创新性地建立了沉积物表面分形结构的镭解吸理论模型,拟合得到钦州湾河流沉积物表面最大可交换态224Ra、226Ra和228Ra活度分别为1.13 dpm/g、0.17 dpm/g和0.85 dpm/g,以干重计;沉积物中224Ra、226Ra和228Ra最大解吸比分别为30%、7%和18%。钦州湾河流沉积物颗粒表面最大可交换态224Ra和226Ra活度分别处于全球中等水平和较低水平,而其最大解吸比分别处于全球较高水平和较低水平。本研究结果有助于更好地理解镭同位素的解吸行为,以帮助更准确地估算SGD通量。
  • Moore W S. The subterranean estuary:a reaction zone of ground water and sea water[J]. Marine Chemistry, 1999, 65(1/2):111-125.
    Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575):612-614.
    Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2):3-33.
    Su Ni, Du Jinzhou, Moore W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra[J]. Science of the Total Environment, 2011, 409(19):3909-3918.
    Ji Tao, Du Jinzhou, Moore W S, et al. Nutrient inputs to a Lagoon through submarine groundwater discharge:the case of Laoye Lagoon, Hainan, China[J]. Journal of Marine Systems, 2013, 111-112:253-262.
    Wang Xilong, Du Jinzhou, Ji Tao, et al. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay-A typical multi-species culture ecosystem in China[J]. Marine Chemistry, 2014, 167:113-122.
    Ye Qi, Liu Jianan, Du Jinzhou, et al. Bacterial diversity in submarine groundwater along the coasts of the Yellow Sea[J]. Frontiers in Microbiology, 2016, 6:1519.
    Tait D R, Maher D T, Sanders C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200:295-309.
    王希龙, 杜金洲, 张经. 基于223Ra和224Ra的桑沟湾海底地下水排放通量[J]. 海洋学报, 2017, 39(4):16-27. Wang Xilong, Du Jinzhou, Zhang Jing. Submarine groundwater discharge into Sanggou Bay traced by 223Ra and 224Ra[J]. Acta Oceanologica Sinica, 2017, 39(4):16-27.
    Burnett W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3):498-543.
    Hancock G J, Murray A S. Source and distribution of dissolved radium in the Bega River estuary, Southeastern Australia[J]. Earth and Planetary Science Letters, 1996, 138(1/4):145-155.
    Gonneea M E, Morris P J, Dulaiova H, et al. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2008, 109(3/4):250-267.
    Moore W S. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes[J]. Biogeochemistry, 2003, 66(1/2):75-93.
    Moore W S, Astwood H, Lindstrom C. Radium isotopes in coastal waters on the Amazon shelf[J]. Geochimica et Cosmochimica Acta, 1995, 59(20):4285-4298.
    Beck A J, Rapaglia J P, Cochran J K, et al. Radium mass-balance in Jamaica Bay, NY:evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3/4):419-441.
    郭占荣, 黄磊, 袁晓婕, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 22(1):118-125. Guo Zhanrong, Huang Lei, Yuan Xiaojie, et al. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes[J]. Advances in Water Science, 2011, 22(1):118-125.
    Li Yuanhui, Chan L H. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary[J]. Earth and Planetary Science Letters, 1979, 43(3):343-350.
    Hancock G J. The effect of salinity on the concentrations of radium and thorium in sediments[D]. Australian:Australian National University, 1993.
    Webster I T, Hancock G J, Murray A S. Modelling the effect of salinity on radium desorption from sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(12):2469-2476.
    Sun Hongbing, Semkow T M. Mobilization of thorium, radium and radon radionuclides in ground water by successive alpha-recoils[J]. Journal of Hydrology, 1998, 205(1/2):126-136.
    Beck A J, Cochran M A. Controls on solid-solution partitioning of radium in saturated marine sands[J]. Marine Chemistry, 2013, 156:38-48.
    谷河泉, 赵峰, 季韬, 等. 盐度对镭同位素在海南红树林沉积物解吸行为的影响[J]. 海洋与湖沼, 2015, 46(1):65-76. Gu Hequan, Zhao Feng, Ji Tao, et al. Effect of salinity on radium desorption from sediments in mangrove wetland, Hainan[J]. Oceanologia et Limnologia Sinica, 2015, 46(1):56-76.
    孔凡翠, 沙占江, 杜金洲, 等. 青海湖西岸镭同位素的解吸和扩散特征[J]. 湖泊科学, 2016, 28(5):1103-1114. Kong Fancui, Sha Zhanjiang, Du Jinzhou, et al. Desorption and diffusion characteristics of radium isotopes from particles in the western part of Lake Qinghai[J]. Journal of Lake Sciences, 2016, 28(5):1103-1114.
    夏冬, 米铁柱, 甄毓, 等. 海水对含水层沉积物中镭解吸的模拟实验[J]. 海洋环境科学, 2016, 35(1):63-67. Xia Dong, Mi Tiezhu, Zhen Yu, et al. Simulating the process of radium desorption from coastal aquifer sediments by seawater[J]. Marine Environmental Science, 2016, 35(1):63-67.
    袁晓婕, 郭占荣, 刘洁, 等. 咸水环境下沉积物中镭的解吸特点[J]. 地球学报, 2014, 35(5):582-588. Yuan Xiaojie, Guo Zhanrong, Liu Jie, et al. Characteristics of radium desorption from sediments in the salt water environment[J]. Acta Geoscientica Sinica, 2014, 35(5):582-588.
    林鸿溢, 李映雪. 分形论:奇异性探索[M]. 北京:北京理工大学出版社, 1992. Lin Hongyi, Li Yingxue. Fractal Theory:Singularity Exploration[M]. Beijing:Beijing Insitute of Technology, 1992.
    Moore W S, Arnold R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research:Oceans, 1996, 101(C1):1321-1329.
    Moore W S. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting[J]. Marine Chemistry, 2008, 109(3/4):188-197.
    Wang Jinlong, Du Jinzhou, Baskaran M, et al. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers[J]. Journal of Geophysical Research:Oceans, 2016, 121(1):224-239.
    Sayles F L, Mangelsdorf Jr P C. The equilibration of clay minerals with sea water:exchange reactions[J]. Geochimica et Cosmochimica Acta, 1977, 41(7):951-960.
    Elsinger R J, Moore W S. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries[J]. Estuarine, Coastal and Shelf Science, 1984, 18(6):601-613.
    Rama, Moore W S. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes[J]. Geochimica et Cosmochimica Acta, 1996, 60(23):4645-4652.
  • 加载中
计量
  • 文章访问数:  617
  • HTML全文浏览量:  34
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-13
  • 修回日期:  2018-03-20

目录

    /

    返回文章
    返回