留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海礼乐盆地海底麻坑地貌及成因分析

张田升 吴自银 赵荻能 李守军 尚继宏 高金耀 周洁琼 刘洋 朱超 鲁号号

张田升, 吴自银, 赵荻能, 李守军, 尚继宏, 高金耀, 周洁琼, 刘洋, 朱超, 鲁号号. 南海礼乐盆地海底麻坑地貌及成因分析[J]. 海洋学报, 2019, 41(3): 106-120. doi: 10.3969/j.issn.0253-4193.2019.03.011
引用本文: 张田升, 吴自银, 赵荻能, 李守军, 尚继宏, 高金耀, 周洁琼, 刘洋, 朱超, 鲁号号. 南海礼乐盆地海底麻坑地貌及成因分析[J]. 海洋学报, 2019, 41(3): 106-120. doi: 10.3969/j.issn.0253-4193.2019.03.011
Zhang Tiansheng, Wu Ziyin, Zhao Dineng, Li Shoujun, Shang Jihong, Gao Jinyao, Zhou Jieqiong, Liu Yang, Zhu Chao, Lu Haohao. The morphologies and genesis of pockmarks in the Reed Basin, South China Sea[J]. Haiyang Xuebao, 2019, 41(3): 106-120. doi: 10.3969/j.issn.0253-4193.2019.03.011
Citation: Zhang Tiansheng, Wu Ziyin, Zhao Dineng, Li Shoujun, Shang Jihong, Gao Jinyao, Zhou Jieqiong, Liu Yang, Zhu Chao, Lu Haohao. The morphologies and genesis of pockmarks in the Reed Basin, South China Sea[J]. Haiyang Xuebao, 2019, 41(3): 106-120. doi: 10.3969/j.issn.0253-4193.2019.03.011

南海礼乐盆地海底麻坑地貌及成因分析

doi: 10.3969/j.issn.0253-4193.2019.03.011
基金项目: 国家自然科学基金(41830540,41476049);SOED国重室自主课题(SOEDZZ1802);全球海气相互作用专项;科技基础性工作专项(2013FY112900)

The morphologies and genesis of pockmarks in the Reed Basin, South China Sea

  • 摘要: 本文基于高分辨率多波束测深和浅地层剖面数据,首次对南海礼乐盆地南部坳陷海底麻坑进行了系统的识别研究。共识别出各类麻坑81个,其中麻坑直径最大约2.4 km,坑深最大约157 m。麻坑种类多样:按平面形态主要分为圆形、椭圆形、拉长形和新月形麻坑;按组合方式分为孤立麻坑、链状麻坑和复合麻坑;按直径分为正常麻坑和大型麻坑。区域内发育多条大型海底峡谷,峡谷侵蚀引起两侧地层稳定性降低,气体储层遭受破坏,泄露的气体沿断层或气烟囱等喷发出海底形成麻坑。而因麻坑生成时剥蚀的沉积物质与周围水体混合并逐渐发展成浊流,在一定程度上促进海底峡谷向下延伸。研究区内单个麻坑的平面形态最初为圆形或椭圆形,之后由于重力流和峡谷侵蚀的影响,逐渐发展成拉长形或新月形,麻坑之间也会发生组合形成复合麻坑。链状麻坑与冲沟的形成联系密切,沿垂直于等深线方向展布的链状麻坑在重力流的冲刷下,发育成底部平坦的麻坑冲沟。对比分析全球其他海域麻坑,发现海底麻坑尺寸与水深关系密切,在深水区域更容易发育大型麻坑。
  • Hovland M, Gardner J V, Judd A G. The significance of pockmarks to understanding fluid flow processes and geohazards[J]. Geofluids, 2002, 2(2): 127-136.
    Judd A G, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007.
    Cathles L M, Su Zheng, Chen Duofu. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration[J]. Marine and Petroleum Geology, 2010, 27(1): 82-91.
    King L H, Maclean B. Pockmarks on the Scotian shelf[J]. Geological Society of America Bulletin, 1970, 81(10): 3141-3148.
    Hovland M. Characteristics of pockmarks in the Norwegian Trench[J]. Marine Geology, 1981, 39(1/2): 103-117.
    Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing[J]. Marine Geology, 2005, 218(1/4): 191-206.
    Hovland M, Judd A G, King L H. Characteristic features of pockmarks on the North Sea Floor and Scotian Shelf[J]. Sedimentology, 1984, 31(4): 471-480.
    Hovland M, Talbot M R Qvale H, et al. Methane-related carbonate cements in pockmarks of the North Sea[J]. Journal of Sedimentary Research, 1987, 57(5): 881-892.
    Çifçi G, Dondurur D, Ergün N M. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea[J]. Geo-Marine Letters, 2003, 23(3/4): 311-322.
    Gay A, Lopez M, Cochonat P, et al. Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin[J]. Geological Society, London, Special Publications, 2003, 216(1): 173-189.
    Sumida P Y G, Yoshinaga M Y, Madureira L A S P, et al. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin[J]. Marine Geology, 2004, 207(1/4): 159-167.
    Brothers L L, Kelley J T, Belknap D F, et al. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: implications for pockmark field longevity[J]. Geo-Marine Letters, 2011, 31(4): 237-248.
    Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1/4): 15-32.
    Dandapath S, Chakraborty B, Karisiddaiah S M, et al. Morphology of pockmarks along the western continental margin of India: employing multibeam bathymetry and backscatter data[J]. Marine and Petroleum Geology, 2010, 27(10): 2107-2117.
    陈江欣, 关永贤, 宋海斌, 等. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义[J]. 地球物理学报, 2015, 58(3): 919-938. Chen Jiangxin, Guan Yongxian, Song Haibin, et al. Distribution characteristics and geological implications of pockmarks and mud volcanoes in the northern and western continental margins of the South China Sea[J]. Chinese Journal of Geophysics, 2015, 58(3): 919-938.
    Paull C K, Ussler Ⅲ W, Holbrook W S, et al. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway[J]. Geo-Marine Letters, 2008, 28(1): 43-51.
    Chen Duanxin, Wang Xiujuan, Völker D, et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 1125-1139.
    Roy S, Hovland M, Braathen A. Evidence of fluid seepage in Grønfjorden, Spitsbergen: Implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics[J]. Marine Geology, 2016, 380: 67-78.
    邸鹏飞, 黄华谷, 黄保家, 等. 莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系[J]. 热带海洋学报, 2012, 31(5): 26-36. Di Pengfei, Huang Huagu, Huang Baojia, et al. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5): 26-36.
    Hovland M, Heggland R, De Vries M H, et al. Unit-pockmarks and their potential significance for predicting fluid flow[J]. Marine and Petroleum Geology, 2010, 27(6): 1190-1199.
    Cole D, Stewart S A, Cartwright J A. Giant irregular pockmark craters in the Palaeogene of the Outer Moray Firth Basin, UK North Sea[J]. Marine and Petroleum Geology, 2000, 17(5): 563-577.
    罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5): 33-42. Luo Min, Wu Lushan, Chen Duofu. Research status and progress of seabed pockmarks[J]. Marine Geology Frontiers, 2012, 28(5): 33-42.
    丁巍伟, 李家彪. 南海南部陆缘构造变形特征及伸展作用: 来自两条973多道地震测线的证据[J]. 地球物理学报, 2011, 54(12): 3038-3056. Ding Weiwei, Li Jiabiao. Seismic stratigraphy, tectonic structure and extension factors across the southern margin of the South China Sea: evidence from two regional multi-channel seismic profiles[J]. Chinese Journal of Geophysics, 2011, 54(12): 3038-3056.
    李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6): 35-53. Li Sanzhong, Suo Yanhui, Liu Xin, et al. Basic structural pattern and tectonic models of the South China Sea: problems, advances and controversies[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 35-53.
    罗敏, 王宏斌, 杨胜雄, 等. 南海天然气水合物研究进展[J]. 矿物岩石地球化学通报, 2013, 32(1): 56-69. Luo Min, Wang Hongbin, Yang Shengxiong, et al. Research advancement of natural gas hydrate in South China Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(1): 56-69.
    Zhang Xin, Du Zengfeng, Luan Zhendong, et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(10): 3700-3713.
    沙志彬, 杨木壮, 梁劲, 等. 南海北部陆坡海底异常地貌特征与天然气水合物的关系[J]. 南海地质研究, 2003(14): 29-34. Sha Zhibin, Yang Muzhuang, Liang Jin, et al. The characteristics of the abnormal physiognomys of seabed related to gas hydrate in North Slope, South China Sea[J]. Research of Geological South China Sea, 2003(14): 29-34.
    李列, 宋海斌, 杨计海. 莺歌海盆地中央坳陷带海底天然气渗漏系统初探[J]. 地球物理学进展, 2006, 21(4): 1244-1247. Li Lie, Song Haibin, Yang Jihai. A preliminary study of seafloor gas seepage in central sag zone of Yinggehai Basin[J]. Progress in Geophysics, 2006, 21(4): 1244-1247.
    拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7): 2208-2222. Bai Yang, Song Haibin, Guan Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multibeam data[J]. Chinese Journal of Geophysics, 2014, 57(7): 2208-2222.
    Sun Qiliang, Wu Shiguo, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156.
    Geng Minghui, Song Haibin, Guan Yongxian, et al. Characteristics and generation mechanism of gullies and mega-pockmarks in the Zhongjiannan Basin, Western South China Sea[J]. Interpretation, 2017, 5(3): SM49-SM59.
    王一博, 张功成, 赵志刚, 等. 南海边缘海构造旋回对沉积充填的控制——以礼乐盆地新生代沉积为例[J]. 石油学报, 2016, 37(4): 474-482. Wang Yibo, Zhang Gongcheng, Zhao Zhigang, et al. The control for tectonic cycle of marginal sea on sedimentary fill in South China Sea: a case study of Cenozoic sediment in Lile Basin[J]. Acta Petrolei Sinica, 2016, 37(4): 474-482.
    Ana M C V S. Characterization of Miocene-Pliocene carbonate platforms, southern Southwest Palawan Basin, Philippines[D]. Texas: Texas A & M University, 2006.
    李鹏春, 赵中贤, 张翠梅, 等. 南沙海域礼乐盆地沉积过程和演化[J]. 地球科学:中国地质大学学报, 2011, 36(5): 837-844. Li Pengchun, Zhao Zhongxian, Zhang Cuimei, et al. Depositional process and evolution of Liyue Basin in Southern South China Sea[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(5): 837-844.
    杨明慧, 张厚和, 廖宗宝, 等. 南海南沙海域沉积盆地构造演化与油气成藏规律[J]. 大地构造与成矿学, 2017, 41(4): 710-720. Yang Minghui, Zhang Houhe, Liao Zongbao, et al. Tectonic evolution and hydrocarbon accumulation of the sedimentary basins in Nansha Sea Waters (South China Sea)[J]. Geotectonica et Metallogenia, 2017, 41(4): 710-720.
    孙龙涛, 孙珍, 詹文欢, 等. 南沙海域礼乐盆地油气资源潜力[J]. 地球科学:中国地质大学学报, 2010, 35(1): 137-145. Sun Longtao, Sun Zhen, Zhan Wenhuan, et al. Petroleum potential prediction of the Lile Basin in Nansha[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(1): 137-145.
    孙龙涛, 孙珍, 周蒂, 等. 南沙海区礼乐盆地沉积地层与构造特征分析[J]. 大地构造与成矿学, 2008, 32(2): 151-158. Sun Longtao, Sun Zhen, Zhou Di, et al. Stratigraphic and structural characteristics of Lile Basin in Nansha Area[J]. Geotectonica et Metallogenia, 2008, 32(2): 151-158.
    张莉, 沙志彬, 王立飞. 南沙海域礼乐盆地中生界油气资源潜力[J]. 海洋地质与第四纪地质, 2007, 27(4): 97-102. Zhang Li, Sha Zhibin, Wang Lifei. Hydrocarbon resources potential of Mesozoic in Liyue Basin, Northeastern Nansha Sea areas[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 97-102.
    Wu Ziyin, Jin Xianglong, Li Jiabiao, et al. Linear sand ridges on the outer shelf of the East China Sea[J]. Chinese Science Bulletin, 2005, 50(21): 2517-2528.
    Wu Ziyin, Jin Xianglong, Cao Zhenyi, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 101-112.
    Wu Ziyin, Jin Xianglong, Zhou Jieqiong, et al. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea[J]. Marine Geophysical Research, 2017, 38(1/2): 187-198.
    Wu Ziyin, Li Jiabiao, Jin Xianglong, et al. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough[J]. Science China Earth Sciences, 2014, 57(8): 1885-1896.
    Berndt C, Bünz S, Mienert J. Polygonal fault systems on the mid-Norwegian margin: a long-term source for fluid flow[J]. Geological Society London Special Publications, 2003, 216(1): 283-290.
    Hood K C, Wenger I M, Gross O P, et al. Hydrocarbon systems analysis of the northern gulf of Mexico: delineation of hydrocarbon migration pathways using seeps and seismic imaging[J]. SEG Geophysical References Series,2002,11:25-40.
    解习农, 刘晓峰, 赵士宝, 等. 异常压力环境下流体活动及其油气运移主通道分析[J]. 地球科学:中国地质大学学报, 2004, 29(5): 589-595. Xie Xinong, Liu Xiaofeng, Zhao Shibao, et al. Fluid flow and hydrocarbon migration pathways in abnormally pressured environments[J]. Earth Science:Journal of China University of Geosciences, 2004, 29(5): 589-595.
    Villaflor G A. Multibeam bathymetry and backscatter data analysis of pockmarks at Vestnesa Ridge off NW-Svalbard[D]. Tromsø: The Arctic University of Norway, 2014.
    Fandel C L, Lippmann T C, Irish J D, et al. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing[J]. Geo-Marine Letters, 2017, 37(1): 1-14.
    Fandel C L, Lippmann T C, Foster D L, et al. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: implications for sediment transport[J]. Geo-Marine Letters, 2017, 37(1): 23-34.
    Fandel C L, Lippmann T C, Foster D L, et al. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow[J]. Geo-Marine Letters, 2017, 37(1): 15-22.
    Webb K E, Øyvind H, Lepland A, et al. Pockmarks in the inner Oslofjord, Norway[J]. Geo-Marine Letters, 2009, 29(2): 111-124.
    Andresen K J, Huuse M, Clausen O R. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea - implications for bottom current activity and fluid migration[J]. Basin Research, 2008, 20(3): 445-466.
    徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10): 98-105. Xu Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.
    Xu J P. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years[J]. Geosphere, 2011, 7(4): 868-876.
    赵月霞, 刘保华, 李西双, 等. 东海陆坡海底峡谷—扇体系沉积特征及物质搬运[J]. 古地理学报, 2011, 13(1): 119-126. Zhao Yuexia, Liu Baohua, Li Xishuang, et al. Sedimentary characters and material transportation of submarine canyon-fan systems in slope of the East China Sea[J]. Journal of Palaeogeography, 2011, 13(1): 119-126.
    苏明, 沙志彬, 匡增桂, 等. 海底峡谷侵蚀-沉积作用与天然气水合物成藏[J]. 现代地质, 2015, 29(1): 155-162. Su Ming, Sha Zhibin, Kuang Zenggui, et al. Erosion and sedimentation of the submarine canyons and the relationship with gas hydrate accumulation[J]. Geoscience, 2015, 29(1): 155-162.
    Masson D G, Huvenne V A I, De Stigter H C, et al. Efficient burial of carbon in a submarine canyon[J]. Geology, 2010, 38(9): 831-834.
    Davies R J, Thatcher K E, Mathias S A, et al. Deepwater canyons: an escape route for methane sealed by methane hydrate[J]. Earth and Planetary Science Letters, 2012, 323-324: 72-78.
    Hammer Ø, Webb K E, Depreiter D. Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway[J]. Geo-Marine Letters, 2009, 29(4): 269-275.
    Nakajima T, Kakuwa Y, Yasudomi Y, et al. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan[J]. Journal of Asian Earth Sciences, 2014, 90: 228-242.
    Micallef A, Mountjoy J J. A topographic signature of a hydrodynamic origin for submarine gullies[J]. Geology, 2011, 39(2): 115-118.
    Canals M, Puig P, De Madron X D, et al. Flushing submarine canyons[J]. Nature, 2006, 444(7117): 354-357.
  • 加载中
计量
  • 文章访问数:  716
  • HTML全文浏览量:  68
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-05-10

目录

    /

    返回文章
    返回