留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北极冰下声传播特性实验研究

翁晋宝 杨燕明 文洪涛 周鸿涛

翁晋宝, 杨燕明, 文洪涛, 周鸿涛. 北极冰下声传播特性实验研究[J]. 海洋学报, 2019, 41(3): 76-85. doi: 10.3969/j.issn.0253-4193.2019.03.008
引用本文: 翁晋宝, 杨燕明, 文洪涛, 周鸿涛. 北极冰下声传播特性实验研究[J]. 海洋学报, 2019, 41(3): 76-85. doi: 10.3969/j.issn.0253-4193.2019.03.008
Weng Jinbao, Yang Yanming, Wen Hongtao, Zhou Hongtao. Experimental study of under-ice acoustic propagation properties in the Arctic[J]. Haiyang Xuebao, 2019, 41(3): 76-85. doi: 10.3969/j.issn.0253-4193.2019.03.008
Citation: Weng Jinbao, Yang Yanming, Wen Hongtao, Zhou Hongtao. Experimental study of under-ice acoustic propagation properties in the Arctic[J]. Haiyang Xuebao, 2019, 41(3): 76-85. doi: 10.3969/j.issn.0253-4193.2019.03.008

北极冰下声传播特性实验研究

doi: 10.3969/j.issn.0253-4193.2019.03.008
基金项目: 国家重点研发计划(2016YFC1400103,2018YFC1405900);国家自然科学基金(61701129,41606116);国家海洋局第三海洋研究所基本科研业务费专项资金(海三科2016016);福建省自然科学基金(2016J01019)

Experimental study of under-ice acoustic propagation properties in the Arctic

  • 摘要: 通过2017年8月6日在北极海域开展的一次声传播实验,开展了冰下声传播特性实验研究。结合Burke-Twersky (BT)散射模型与射线模型,分析了冰下声传播的多途到达结构,研究了接收声强变化规律,解释了接收声强在30 min内衰减20 dB的现象,分析了接收信号的时间相关性,探讨了接收信号相关性较低的原因。实验结果表明,表面接收信号主要由小角度多次反转反射声线、一次海底反射声线和二次海底反射声线依次构成,表面声道到达信号显著强于海底反射信号。试验冰站在试验期间的运动导致了声传播信号强度和相关性的迅速衰减,并通过仿真得到了验证。
  • 李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型学科[J]. 应用声学, 2014, 33(6): 471-483. Li Qihu, Wang Ning, Zhao Jinping, et al. Arctic underwater acoustics: an attractive new topic in ocean acoustics[J]. Journal of Applied Acoustics, 2014, 33(6): 471-483.
    Mikhalevsky P N, Gavrilov A N, Baggeroer A B. The transarctic acoustic propagation experiment and climate monitoring in the Arctic[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 183-201.
    Brown J R. Reverberation under Arctic ice[J]. The Journal of the Acoustical Society of America, 1964, 36(3): 601-603.
    Buck B M, Greene C R. Arctic deep-water propagation measurements[J]. The Journal of the Acoustical Society of America, 1964, 36(8): 1526-1533.
    Pekeris C L. Theory of propagation of explosive sound in shallow water[J]. Geological Society of America Memorial, 1948, 27: 1-116.
    Kutschale H. Arctic hydroacoustics[J]. Arctic, 1969, 22(3): 246-264.
    Diachok O I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean[J]. The Journal of the Acoustical Society of America, 1976, 59(5): 1110-1120.
    Wolf J W, Diachok O I, Yang T C, et al. Very-low-frequency under-ice reflectivity[J]. The Journal of the Acoustical Society of America, 1993, 93(3): 1329-1334.
    LePage K, Schmidt H. Modeling of low-frequency transmission loss in the central Arctic[J]. The Journal of the Acoustical Society of America, 1994, 96(3): 1783-1795.
    Wiggins S M, McDonald M A, Munger L M, et al. Waveguide propagation allows range estimates for North Pacific right whales in the Bering Sea[J]. Canadian Acoustics, 2004, 32(2): 146-154.
    O'Hara C A, Collis J M. Underwater acoustic propagation in Arctic environments[J]. The Journal of the Acoustical Society of America, 2011, 130(4): 2529.
    Freitag L, Koski P, Morozov A, et al. Acoustic communications and navigation under Arctic ice[C]//2012 Oceans. Hampton Roads, VA, USA: IEEE, 2012.
    Mikhalevsky P N, Sagen H, Worcester P F, et al. Multipurpose acoustic networks in the integrated Arctic Ocean observing system[J]. Arctic, 2015, 68(S1): 1-17.
    Mikhalevsky P, Gavrilov A, Moustafa M S, et al. Arctic Ocean warming: submarine and acoustic measurements[C]//MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu, HI, USA: IEEE, 2001: 1523-1528.
    Duda T F. Acoustic signal and noise changes in the Beaufort Sea Pacific Water duct under anticipated future acidification of Arctic Ocean waters[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 1926-1933.
    Ozanich E, Gerstoft P, Worcester P F, et al. Eastern Arctic ambient noise on a drifting vertical array[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 1997-2006.
    Hope G, Sagen H, Storheim E, et al. Measured and modeled acoustic propagation underneath the rough Arctic sea-ice[J]. The Journal of the Acoustical Society of America, 2017, 142(3): 1619-1633.
    水声工程中心. 卫翀华副研究员参加中国第七次北极科学考察活动凯旋[EB/OL]. (2016-10-19)[2017-10-10]. http://www.ioa.ac.cn/xwzx/kydt/201610/t20161019_4682156.html Underwater Acoustic Engineering Center. Associate researcher Wei Chonghua triumph in China's Seventh Arctic Scientific Expedition[EB/OL]. (2016-10-19)[2017-10-10]. http://www.ioa.ac.cn/xwzx/kydt/201610/t20161019_4682156.html
    刘崇磊, 李涛, 尹力, 等. 北极冰下双轴声道传播特性研究[J]. 应用声学, 2016, 35(4): 309-315. Liu Chonglei, Li Tao, Yin Li, et al. Acoustic propagation properties of two-axes channel under sea ice in the Arctic[J]. Journal of Applied Acoustics, 2016, 35(4): 309-315.
    刘洪宁, 吕连港, 刘娜, 等. 夏季加拿大海盆海冰边缘区声体积后向散射强度研究[J]. 海洋学报, 2015, 37(11): 127-134. Liu Hongning, Lü Lian'gang, Liu Na, et al. Study on volume backscattering strength in summer marginal ice zone of Canada Basin[J]. Haiyang Xuebao, 2015, 37(11): 127-134.
    Yin Jingwei, Yang Guang, Huang Defeng, et al. Blind adaptive multi-user detection for under-ice acoustic communications with mobile interfering users[J]. The Journal of the Acoustical Society of America, 2017, 141(1): EL70-EL75.
    Yin Jingwei. Experimental demonstration of under ice acoustic communication[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 2214.
    殷敬伟, 杜鹏宇, 朱广平, 等. 松花江冰下声学试验技术研究[J]. 应用声学, 2016, 35(1): 58-68. Yin Jingwei, Du Pengyu, Zhu Guangping, et al. The research of the under-ice acoustic experiment technology[J]. Journal of Applied Acoustics, 2016, 35(1): 58-68.
    Yang Guang, Yin Jingwei, Huang Defeng, et al. A Kalman filter-based blind adaptive multi-user detection algorithm for underwater acoustic networks[J]. IEEE Sensors Journal, 2016, 16(11): 4023-4033.
    朱广平, 殷敬伟, 陈文剑, 等. 北极典型冰下声信道建模及特性[J]. 声学学报, 2017, 42(2): 152-158. Zhu Guangping, Yin Jingwei, Chen Wenjian, et al. Modeling and characterizing the typical under-ice acoustic channel for the Arctic[J]. Acta Acustica, 2017, 42(2): 152-158.
    陈文剑, 殷敬伟, 周焕玲, 等. 平面冰层覆盖下水中声传播损失特性分析[J]. 极地研究, 2017, 29(2): 194-203. Chen Wenjian, Yin Jingwei, Zhou Huanling, et al. Characteristic analysis of acoustic transmission loss in water under plane ice cover[J]. Chinese Journal of Polar Research, 2017, 29(2): 194-203.
    Burke J E, Twersky V. Scattering and reflection by elliptically striated surfaces[J]. The Journal of the Acoustical Society of America, 1966, 40(4): 883-895.
    Burke J E, Twersky V. On scattering of waves by an elliptic cylinder and by a semielliptic protuberance on a ground plane[J]. Journal of the Optical Society of America, 1964, 54(6): 732-744.
    Rodríguez O C. General description of the BELLHOP ray tracing program[EB/OL]. (2008-06-13)[2016-01-07]. http://oalib.hlsresearch.com/Rays/GeneralDescription.pdf
    Porter M B. The BELLHOP manual and user's guide: preliminary draft[EB/OL]. (2011-01-31)[2016-01-07]. http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf
    陈连荣, 彭朝晖, 南明星. 高斯射线束方法在深海匹配场定位中的应用[J]. 声学学报, 2013, 38(6): 715-723. Chen Lianrong, Peng Zhaohui, Nan Mingxing. The application of Gaussian beam method in deep ocean matched-field localization[J]. Acta Acustica, 2013, 38(6): 715-723.
  • 加载中
计量
  • 文章访问数:  612
  • HTML全文浏览量:  32
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-03-26

目录

    /

    返回文章
    返回